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Preface

Probability theory began in seventeenth century France when the two great French
mathematicians, Blaise Pascal and Pierre de Fermat, corresponded over two prob-
lems from games of chance. Problems like those Pascal and Fermat solved continued
to influence such early researchers as Huygens, Bernoulli, and DeMoivre in estab-
lishing a mathematical theory of probability. Today, probability theory is a well-
established branch of mathematics that finds applications in every area of scholarly
activity from music to physics, and in daily experience from weather prediction to
predicting the risks of new medical treatments.

This text is designed for an introductory probability course taken by sophomores,
juniors, and seniors in mathematics, the physical and social sciences, engineering,
and computer science. It presents a thorough treatment of probability ideas and
techniques necessary for a firm understanding of the subject. The text can be used
in a variety of course lengths, levels, and areas of emphasis.

For use in a standard one-term course, in which both discrete and continuous
probability is covered, students should have taken as a prerequisite two terms of
calculus, including an introduction to multiple integrals. In order to cover Chap-
ter 11, which contains material on Markov chains, some knowledge of matrix theory
is necessary.

The text can also be used in a discrete probability course. The material has been
organized in such a way that the discrete and continuous probability discussions are
presented in a separate, but parallel, manner. This organization dispels an overly
rigorous or formal view of probability and offers some strong pedagogical value
in that the discrete discussions can sometimes serve to motivate the more abstract
continuous probability discussions. For use in a discrete probability course, students
should have taken one term of calculus as a prerequisite.

Very little computing background is assumed or necessary in order to obtain full
benefits from the use of the computing material and examples in the text. All of
the programs that are used in the text have been written in each of the languages
TrueBASIC, Maple, and Mathematica.

This book is on the Web at http://www.dartmouth.edu/̃ chance, and is part of
the Chance project, which is devoted to providing materials for beginning courses in
probability and statistics. The computer programs, solutions to the odd-numbered
exercises, and current errata are also available at this site. Instructors may obtain
all of the solutions by writing to either of the authors, at jlsnell@dartmouth.edu and
cgrinst1@swarthmore.edu. It is our intention to place items related to this book at
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this site, and we invite our readers to submit their contributions.

FEATURES

Level of rigor and emphasis: Probability is a wonderfully intuitive and applicable
field of mathematics. We have tried not to spoil its beauty by presenting too much
formal mathematics. Rather, we have tried to develop the key ideas in a somewhat
leisurely style, to provide a variety of interesting applications to probability, and to
show some of the nonintuitive examples that make probability such a lively subject.

Exercises: There are over 600 exercises in the text providing plenty of oppor-
tunity for practicing skills and developing a sound understanding of the ideas. In
the exercise sets are routine exercises to be done with and without the use of a
computer and more theoretical exercises to improve the understanding of basic con-
cepts. More difficult exercises are indicated by an asterisk. A solution manual for
all of the exercises is available to instructors.

Historical remarks: Introductory probability is a subject in which the funda-
mental ideas are still closely tied to those of the founders of the subject. For this
reason, there are numerous historical comments in the text, especially as they deal
with the development of discrete probability.

Pedagogical use of computer programs: Probability theory makes predictions
about experiments whose outcomes depend upon chance. Consequently, it lends
itself beautifully to the use of computers as a mathematical tool to simulate and
analyze chance experiments.

In the text the computer is utilized in several ways. First, it provides a labora-
tory where chance experiments can be simulated and the students can get a feeling
for the variety of such experiments. This use of the computer in probability has
been already beautifully illustrated by William Feller in the second edition of his
famous text An Introduction to Probability Theory and Its Applications (New York:
Wiley, 1950). In the preface, Feller wrote about his treatment of fluctuation in coin
tossing: “The results are so amazing and so at variance with common intuition
that even sophisticated colleagues doubted that coins actually misbehave as theory
predicts. The record of a simulated experiment is therefore included.”

In addition to providing a laboratory for the student, the computer is a powerful
aid in understanding basic results of probability theory. For example, the graphical
illustration of the approximation of the standardized binomial distributions to the
normal curve is a more convincing demonstration of the Central Limit Theorem
than many of the formal proofs of this fundamental result.

Finally, the computer allows the student to solve problems that do not lend
themselves to closed-form formulas such as waiting times in queues. Indeed, the
introduction of the computer changes the way in which we look at many problems
in probability. For example, being able to calculate exact binomial probabilities
for experiments up to 1000 trials changes the way we view the normal and Poisson
approximations.



PREFACE ix

ACKNOWLEDGMENTS FOR FIRST EDITION

Anyone writing a probability text today owes a great debt to William Feller,
who taught us all how to make probability come alive as a subject matter. If you
find an example, an application, or an exercise that you really like, it probably had
its origin in Feller’s classic text, An Introduction to Probability Theory and Its

Applications.

This book had its start with a course given jointly at Dartmouth College with
Professor John Kemeny. I am indebted to Professor Kemeny for convincing me that
it is both useful and fun to use the computer in the study of probability. He has
continuously and generously shared his ideas on probability and computing with
me. No less impressive has been the help of John Finn in making the computing
an integral part of the text and in writing the programs so that they not only
can be easily used, but they also can be understood and modified by the student to
explore further problems. Some of the programs in the text were developed through
collaborative efforts with John Kemeny and Thomas Kurtz on a Sloan Foundation
project and with John Finn on a Keck Foundation project. I am grateful to both
foundations for their support.

I am indebted to many other colleagues, students, and friends for valuable com-
ments and suggestions. A few whose names stand out are: Eric and Jim Baum-
gartner, Tom Bickel, Bob Beck, Ed Brown, Christine Burnley, Richard Crowell,
David Griffeath, John Lamperti, Beverly Nickerson, Reese Prosser, Cathy Smith,
and Chris Thron.

The following individuals were kind enough to review various drafts of the
manuscript. Their encouragement, criticisms, and suggestions were very helpful.

Ron Barnes University of Houston, Downtown College
Thomas Fischer Texas A & M University
Richard Groeneveld Iowa State University
James Kuelbs University of Wisconsin, Madison
Greg Lawler Duke University
Sidney Resnick Colorado State University
Malcom Sherman SUNY Albany
Olaf Stackelberg Kent State University
Murad Taqqu Boston University
Abraham Wender University of North Carolina

In addition, I would especially like to thank James Kuelbs, Sidney Resnick, and
their students for using the manuscript in their courses and sharing their experience
and invaluable suggestions with me.

The versatility of Dartmouth’s mathematical word processor PREPPY, written
by Professor James Baumgartner, has made it much easier to make revisions, but has
made the job of typist extraordinaire Marie Slack correspondingly more challenging.
Her high standards and willingness always to try the next more difficult task have
made it all possible.

Finally, I must thank all the people at Random House who helped during the de-



x PREFACE

velopment and production of this project. First, among these was my editor Wayne
Yuhasz, whose continued encouragement and commitment were very helpful during
the development of the manuscript. The entire production team provided efficient
and professional support: Margaret Pinette, project manager; Michael Weinstein,
production manager; and Kate Bradfor of Editing, Design, and Production, Inc.

ACKNOWLEDGMENTS FOR SECOND EDITION

The debt to William Feller has not diminished in the years between the two
editions of this book. His book on probability is likely to remain the classic book
in this field for many years.

The process of revising the first edition of this book began with some high-level
discussions involving the two present co-authors together with Reese Prosser and
John Finn. It was during these discussions that, among other things, the first co-
author was made aware of the concept of “negative royalties” by Professor Prosser.

We are indebted to many people for their help in this undertaking. First and
foremost, we thank Mark Kernighan for his almost 40 pages of single-spaced com-
ments on the first edition. Many of these comments were very thought-provoking;
in addition, they provided a student’s perspective on the book. Most of the major
changes in the second edition have their genesis in these notes.

We would also like to thank Fuxing Hou, who provided extensive help with the
typesetting and the figures. Her incessant good humor in the face of many trials,
both big (“we need to change the entire book from Lamstex to Latex”) and small
(“could you please move this subscript down just a bit?”), was truly remarkable.

We would also like to thank Lee Nave, who typed the entire first edition of the
book into the computer. Lee corrected most of the typographical errors in the first
edition during this process, making our job easier.

Karl Knaub and Jessica Sklar are responsible for the implementations of the
computer programs in Mathematica and Maple, and we thank them for their efforts.
We also thank Jessica for her work on the solution manual for the exercises, building
on the work done by Gang Wang for the first edition.

Tom Shemanske and Dana Williams provided much TeX-nical assistance. Their
patience and willingness to help, even to the extent of writing intricate TeX macros,
are very much appreciated.

The following people used various versions of the second edition in their proba-
bility courses, and provided valuable comments and criticisms.

Marty Arkowitz Dartmouth College
Aimee Johnson Swarthmore College
Bill Peterson Middlebury College
Dan Rockmore Dartmouth College
Shunhui Zhu Dartmouth College

Reese Prosser and John Finn provided much in the way of moral support and
camaraderie throughout this project. Certainly, one of the high points of this entire



PREFACE xi

endeavour was Professor Prosser’s telephone call to a casino in Monte Carlo, in an
attempt to find out the rules involving the “prison” in roulette.

Peter Doyle motivated us to make this book part of a larger project on the Web,
to which others can contribute. He also spent many hours actually carrying out the
operation of putting the book on the Web.

Finally, we thank Sergei Gelfand and the American Mathematical Society for
their interest in our book, their help in its production, and their willingness to let
us put the book on the Web.





Chapter 1

Discrete Probability
Distributions

1.1 Simulation of Discrete Probabilities

Probability

In this chapter, we shall first consider chance experiments with a finite number of
possible outcomes ω1, ω2, . . . , ωn. For example, we roll a die and the possible
outcomes are 1, 2, 3, 4, 5, 6 corresponding to the side that turns up. We toss a coin
with possible outcomes H (heads) and T (tails).

It is frequently useful to be able to refer to an outcome of an experiment. For
example, we might want to write the mathematical expression which gives the sum
of four rolls of a die. To do this, we could let Xi, i = 1, 2, 3, 4, represent the values
of the outcomes of the four rolls, and then we could write the expression

X1 + X2 + X3 + X4

for the sum of the four rolls. The Xi’s are called random variables. A random vari-
able is simply an expression whose value is the outcome of a particular experiment.
Just as in the case of other types of variables in mathematics, random variables can
take on different values.

Let X be the random variable which represents the roll of one die. We shall
assign probabilities to the possible outcomes of this experiment. We do this by
assigning to each outcome ωj a nonnegative number m(ωj) in such a way that

m(ω1) + m(ω2) + · · ·+ m(ω6) = 1 .

The function m(ωj) is called the distribution function of the random variable X.
For the case of the roll of the die we would assign equal probabilities or probabilities
1/6 to each of the outcomes. With this assignment of probabilities, one could write

P (X ≤ 4) =
2
3

1
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to mean that the probability is 2/3 that a roll of a die will have a value which does
not exceed 4.

Let Y be the random variable which represents the toss of a coin. In this case,
there are two possible outcomes, which we can label as H and T. Unless we have
reason to suspect that the coin comes up one way more often than the other way,
it is natural to assign the probability of 1/2 to each of the two outcomes.

In both of the above experiments, each outcome is assigned an equal probability.
This would certainly not be the case in general. For example, if a drug is found to
be effective 30 percent of the time it is used, we might assign a probability .3 that
the drug is effective the next time it is used and .7 that it is not effective. This last
example illustrates the intuitive frequency concept of probability. That is, if we have
a probability p that an experiment will result in outcome A, then if we repeat this
experiment a large number of times we should expect that the fraction of times that
A will occur is about p. To check intuitive ideas like this, we shall find it helpful to
look at some of these problems experimentally. We could, for example, toss a coin
a large number of times and see if the fraction of times heads turns up is about 1/2.
We could also simulate this experiment on a computer.

Simulation

We want to be able to perform an experiment that corresponds to a given set of
probabilities; for example, m(ω1) = 1/2, m(ω2) = 1/3, and m(ω3) = 1/6. In this
case, one could mark three faces of a six-sided die with an ω1, two faces with an ω2,
and one face with an ω3.

In the general case we assume that m(ω1), m(ω2), . . . , m(ωn) are all rational
numbers, with least common denominator n. If n > 2, we can imagine a long
cylindrical die with a cross-section that is a regular n-gon. If m(ωj) = nj/n, then
we can label nj of the long faces of the cylinder with an ωj , and if one of the end
faces comes up, we can just roll the die again. If n = 2, a coin could be used to
perform the experiment.

We will be particularly interested in repeating a chance experiment a large num-
ber of times. Although the cylindrical die would be a convenient way to carry out
a few repetitions, it would be difficult to carry out a large number of experiments.
Since the modern computer can do a large number of operations in a very short
time, it is natural to turn to the computer for this task.

Random Numbers

We must first find a computer analog of rolling a die. This is done on the computer
by means of a random number generator. Depending upon the particular software
package, the computer can be asked for a real number between 0 and 1, or an integer
in a given set of consecutive integers. In the first case, the real numbers are chosen
in such a way that the probability that the number lies in any particular subinterval
of this unit interval is equal to the length of the subinterval. In the second case,
each integer has the same probability of being chosen.
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.203309 .762057 .151121 .623868

.932052 .415178 .716719 .967412

.069664 .670982 .352320 .049723

.750216 .784810 .089734 .966730

.946708 .380365 .027381 .900794

Table 1.1: Sample output of the program RandomNumbers.

Let X be a random variable with distribution function m(ω), where ω is in the
set {ω1, ω2, ω3}, and m(ω1) = 1/2, m(ω2) = 1/3, and m(ω3) = 1/6. If our computer
package can return a random integer in the set {1, 2, ..., 6}, then we simply ask it
to do so, and make 1, 2, and 3 correspond to ω1, 4 and 5 correspond to ω2, and 6
correspond to ω3. If our computer package returns a random real number r in the
interval (0, 1), then the expression

b6rc+ 1

will be a random integer between 1 and 6. (The notation bxc means the greatest
integer not exceeding x, and is read “floor of x.”)

The method by which random real numbers are generated on a computer is
described in the historical discussion at the end of this section. The following
example gives sample output of the program RandomNumbers.

Example 1.1 (Random Number Generation) The program RandomNumbers
generates n random real numbers in the interval [0, 1], where n is chosen by the
user. When we ran the program with n = 20, we obtained the data shown in
Table 1.1. 2

Example 1.2 (Coin Tossing) As we have noted, our intuition suggests that the
probability of obtaining a head on a single toss of a coin is 1/2. To have the
computer toss a coin, we can ask it to pick a random real number in the interval
[0, 1] and test to see if this number is less than 1/2. If so, we shall call the outcome
heads; if not we call it tails. Another way to proceed would be to ask the computer
to pick a random integer from the set {0, 1}. The program CoinTosses carries
out the experiment of tossing a coin n times. Running this program, with n = 20,
resulted in:

THTTTHTTTTHTTTTTHHTT.

Note that in 20 tosses, we obtained 5 heads and 15 tails. Let us toss a coin n

times, where n is much larger than 20, and see if we obtain a proportion of heads
closer to our intuitive guess of 1/2. The program CoinTosses keeps track of the
number of heads. When we ran this program with n = 1000, we obtained 494 heads.
When we ran it with n = 10000, we obtained 5039 heads.
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We notice that when we tossed the coin 10,000 times, the proportion of heads
was close to the “true value” .5 for obtaining a head when a coin is tossed. A math-
ematical model for this experiment is called Bernoulli Trials (see Chapter 3). The
Law of Large Numbers, which we shall study later (see Chapter 8), will show that
in the Bernoulli Trials model, the proportion of heads should be near .5, consistent
with our intuitive idea of the frequency interpretation of probability.

Of course, our program could be easily modified to simulate coins for which the
probability of a head is p, where p is a real number between 0 and 1. 2

In the case of coin tossing, we already knew the probability of the event occurring
on each experiment. The real power of simulation comes from the ability to estimate
probabilities when they are not known ahead of time. This method has been used in
the recent discoveries of strategies that make the casino game of blackjack favorable
to the player. We illustrate this idea in a simple situation in which we can compute
the true probability and see how effective the simulation is.

Example 1.3 (Dice Rolling) We consider a dice game that played an important
role in the historical development of probability. The famous letters between Pas-
cal and Fermat, which many believe started a serious study of probability, were
instigated by a request for help from a French nobleman and gambler, Chevalier
de Méré. It is said that de Méré had been betting that, in four rolls of a die, at
least one six would turn up. He was winning consistently and, to get more people
to play, he changed the game to bet that, in 24 rolls of two dice, a pair of sixes
would turn up. It is claimed that de Méré lost with 24 and felt that 25 rolls were
necessary to make the game favorable. It was un grand scandale that mathematics
was wrong.

We shall try to see if de Méré is correct by simulating his various bets. The
program DeMere1 simulates a large number of experiments, seeing, in each one,
if a six turns up in four rolls of a die. When we ran this program for 1000 plays,
a six came up in the first four rolls 48.6 percent of the time. When we ran it for
10,000 plays this happened 51.98 percent of the time.

We note that the result of the second run suggests that de Méré was correct
in believing that his bet with one die was favorable; however, if we had based our
conclusion on the first run, we would have decided that he was wrong. Accurate
results by simulation require a large number of experiments. 2

The program DeMere2 simulates de Méré’s second bet that a pair of sixes
will occur in n rolls of a pair of dice. The previous simulation shows that it is
important to know how many trials we should simulate in order to expect a certain
degree of accuracy in our approximation. We shall see later that in these types of
experiments, a rough rule of thumb is that, at least 95% of the time, the error does
not exceed the reciprocal of the square root of the number of trials. Fortunately,
for this dice game, it will be easy to compute the exact probabilities. We shall
show in the next section that for the first bet the probability that de Méré wins is
1− (5/6)4 = .518.
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Figure 1.1: Peter’s winnings in 40 plays of heads or tails.

One can understand this calculation as follows: The probability that no 6 turns
up on the first toss is (5/6). The probability that no 6 turns up on either of the
first two tosses is (5/6)2. Reasoning in the same way, the probability that no 6
turns up on any of the first four tosses is (5/6)4. Thus, the probability of at least
one 6 in the first four tosses is 1 − (5/6)4. Similarly, for the second bet, with 24
rolls, the probability that de Méré wins is 1 − (35/36)24 = .491, and for 25 rolls it
is 1− (35/36)25 = .506.

Using the rule of thumb mentioned above, it would require 27,000 rolls to have a
reasonable chance to determine these probabilities with sufficient accuracy to assert
that they lie on opposite sides of .5. It is interesting to ponder whether a gambler
can detect such probabilities with the required accuracy from gambling experience.
Some writers on the history of probability suggest that de Méré was, in fact, just
interested in these problems as intriguing probability problems.

Example 1.4 (Heads or Tails) For our next example, we consider a problem where
the exact answer is difficult to obtain but for which simulation easily gives the
qualitative results. Peter and Paul play a game called heads or tails. In this game,
a fair coin is tossed a sequence of times—we choose 40. Each time a head comes up
Peter wins 1 penny from Paul, and each time a tail comes up Peter loses 1 penny
to Paul. For example, if the results of the 40 tosses are

THTHHHHTTHTHHTTHHTTTTHHHTHHTHHHTHHHTTTHH.

Peter’s winnings may be graphed as in Figure 1.1.
Peter has won 6 pennies in this particular game. It is natural to ask for the

probability that he will win j pennies; here j could be any even number from −40
to 40. It is reasonable to guess that the value of j with the highest probability
is j = 0, since this occurs when the number of heads equals the number of tails.
Similarly, we would guess that the values of j with the lowest probabilities are
j = ±40.
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A second interesting question about this game is the following: How many times
in the 40 tosses will Peter be in the lead? Looking at the graph of his winnings
(Figure 1.1), we see that Peter is in the lead when his winnings are positive, but
we have to make some convention when his winnings are 0 if we want all tosses to
contribute to the number of times in the lead. We adopt the convention that, when
Peter’s winnings are 0, he is in the lead if he was ahead at the previous toss and
not if he was behind at the previous toss. With this convention, Peter is in the lead
34 times in our example. Again, our intuition might suggest that the most likely
number of times to be in the lead is 1/2 of 40, or 20, and the least likely numbers
are the extreme cases of 40 or 0.

It is easy to settle this by simulating the game a large number of times and
keeping track of the number of times that Peter’s final winnings are j, and the
number of times that Peter ends up being in the lead by k. The proportions over
all games then give estimates for the corresponding probabilities. The program
HTSimulation carries out this simulation. Note that when there are an even
number of tosses in the game, it is possible to be in the lead only an even number
of times. We have simulated this game 10,000 times. The results are shown in
Figures 1.2 and 1.3. These graphs, which we call spike graphs, were generated
using the program Spikegraph. The vertical line, or spike, at position x on the
horizontal axis, has a height equal to the proportion of outcomes which equal x.
Our intuition about Peter’s final winnings was quite correct, but our intuition about
the number of times Peter was in the lead was completely wrong. The simulation
suggests that the least likely number of times in the lead is 20 and the most likely
is 0 or 40. This is indeed correct, and the explanation for it is suggested by playing
the game of heads or tails with a large number of tosses and looking at a graph of
Peter’s winnings. In Figure 1.4 we show the results of a simulation of the game, for
1000 tosses and in Figure 1.5 for 10,000 tosses.

In the second example Peter was ahead most of the time. It is a remarkable
fact, however, that, if play is continued long enough, Peter’s winnings will continue
to come back to 0, but there will be very long times between the times that this
happens. These and related results will be discussed in Chapter 12. 2

In all of our examples so far, we have simulated equiprobable outcomes. We
illustrate next an example where the outcomes are not equiprobable.

Example 1.5 (Horse Races) Four horses (Acorn, Balky, Chestnut, and Dolby)
have raced many times. It is estimated that Acorn wins 30 percent of the time,
Balky 40 percent of the time, Chestnut 20 percent of the time, and Dolby 10 percent
of the time.

We can have our computer carry out one race as follows: Choose a random
number x. If x < .3 then we say that Acorn won. If .3 ≤ x < .7 then Balky wins.
If .7 ≤ x < .9 then Chestnut wins. Finally, if .9 ≤ x then Dolby wins.

The program HorseRace uses this method to simulate the outcomes of n races.
Running this program for n = 10 we found that Acorn won 40 percent of the time,
Balky 20 percent of the time, Chestnut 10 percent of the time, and Dolby 30 percent



1.1. SIMULATION OF DISCRETE PROBABILITIES 7

Figure 1.2: Distribution of winnings.

Figure 1.3: Distribution of number of times in the lead.



8 CHAPTER 1. DISCRETE PROBABILITY DISTRIBUTIONS

200 400 600 800 1000

1000 plays

-50

-40

-30

-20

-10

0

10

20

Figure 1.4: Peter’s winnings in 1000 plays of heads or tails.
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Figure 1.5: Peter’s winnings in 10,000 plays of heads or tails.
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of the time. A larger number of races would be necessary to have better agreement
with the past experience. Therefore we ran the program to simulate 1000 races
with our four horses. Although very tired after all these races, they performed in
a manner quite consistent with our estimates of their abilities. Acorn won 29.8
percent of the time, Balky 39.4 percent, Chestnut 19.5 percent, and Dolby 11.3
percent of the time.

The program GeneralSimulation uses this method to simulate repetitions of
an arbitrary experiment with a finite number of outcomes occurring with known
probabilities. 2

Historical Remarks

Anyone who plays the same chance game over and over is really carrying out a sim-
ulation, and in this sense the process of simulation has been going on for centuries.
As we have remarked, many of the early problems of probability might well have
been suggested by gamblers’ experiences.

It is natural for anyone trying to understand probability theory to try simple
experiments by tossing coins, rolling dice, and so forth. The naturalist Buffon tossed
a coin 4040 times, resulting in 2048 heads and 1992 tails. He also estimated the
number π by throwing needles on a ruled surface and recording how many times
the needles crossed a line (see Section 2.1). The English biologist W. F. R. Weldon1

recorded 26,306 throws of 12 dice, and the Swiss scientist Rudolf Wolf2 recorded
100,000 throws of a single die without a computer. Such experiments are very time-
consuming and may not accurately represent the chance phenomena being studied.
For example, for the dice experiments of Weldon and Wolf, further analysis of the
recorded data showed a suspected bias in the dice. The statistician Karl Pearson
analyzed a large number of outcomes at certain roulette tables and suggested that
the wheels were biased. He wrote in 1894:

Clearly, since the Casino does not serve the valuable end of huge lab-
oratory for the preparation of probability statistics, it has no scientific
raison d’être. Men of science cannot have their most refined theories
disregarded in this shameless manner! The French Government must be
urged by the hierarchy of science to close the gaming-saloons; it would
be, of course, a graceful act to hand over the remaining resources of the
Casino to the Académie des Sciences for the endowment of a laboratory
of orthodox probability; in particular, of the new branch of that study,
the application of the theory of chance to the biological problems of
evolution, which is likely to occupy so much of men’s thoughts in the
near future.3

However, these early experiments were suggestive and led to important discov-
eries in probability and statistics. They led Pearson to the chi-squared test, which

1T. C. Fry, Probability and Its Engineering Uses, 2nd ed. (Princeton: Van Nostrand, 1965).
2E. Czuber, Wahrscheinlichkeitsrechnung, 3rd ed. (Berlin: Teubner, 1914).
3K. Pearson, “Science and Monte Carlo,” Fortnightly Review , vol. 55 (1894), p. 193; cited in

S. M. Stigler, The History of Statistics (Cambridge: Harvard University Press, 1986).
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is of great importance in testing whether observed data fit a given probability dis-
tribution.

By the early 1900s it was clear that a better way to generate random numbers
was needed. In 1927, L. H. C. Tippett published a list of 41,600 digits obtained by
selecting numbers haphazardly from census reports. In 1955, RAND Corporation
printed a table of 1,000,000 random numbers generated from electronic noise. The
advent of the high-speed computer raised the possibility of generating random num-
bers directly on the computer, and in the late 1940s John von Neumann suggested
that this be done as follows: Suppose that you want a random sequence of four-digit
numbers. Choose any four-digit number, say 6235, to start. Square this number
to obtain 38,875,225. For the second number choose the middle four digits of this
square (i.e., 8752). Do the same process starting with 8752 to get the third number,
and so forth.

More modern methods involve the concept of modular arithmetic. If a is an
integer and m is a positive integer, then by a (mod m) we mean the remainder
when a is divided by m. For example, 10 (mod 4) = 2, 8 (mod 2) = 0, and so
forth. To generate a random sequence X0, X1, X2, . . . of numbers choose a starting
number X0 and then obtain the numbers Xn+1 from Xn by the formula

Xn+1 = (aXn + c) (mod m) ,

where a, c, and m are carefully chosen constants. The sequence X0, X1, X2, . . .

is then a sequence of integers between 0 and m − 1. To obtain a sequence of real
numbers in [0, 1), we divide each Xj by m. The resulting sequence consists of
rational numbers of the form j/m, where 0 ≤ j ≤ m − 1. Since m is usually a
very large integer, we think of the numbers in the sequence as being random real
numbers in [0, 1).

For both von Neumann’s squaring method and the modular arithmetic technique
the sequence of numbers is actually completely determined by the first number.
Thus, there is nothing really random about these sequences. However, they produce
numbers that behave very much as theory would predict for random experiments.
To obtain different sequences for different experiments the initial number X0 is
chosen by some other procedure that might involve, for example, the time of day.4

During the Second World War, physicists at the Los Alamos Scientific Labo-
ratory needed to know, for purposes of shielding, how far neutrons travel through
various materials. This question was beyond the reach of theoretical calculations.
Daniel McCracken, writing in the Scientific American, states:

The physicists had most of the necessary data: they knew the average
distance a neutron of a given speed would travel in a given substance
before it collided with an atomic nucleus, what the probabilities were
that the neutron would bounce off instead of being absorbed by the
nucleus, how much energy the neutron was likely to lose after a given

4For a detailed discussion of random numbers, see D. E. Knuth, The Art of Computer Pro-
gramming, vol. II (Reading: Addison-Wesley, 1969).
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collision and so on.5

John von Neumann and Stanislas Ulam suggested that the problem be solved
by modeling the experiment by chance devices on a computer. Their work being
secret, it was necessary to give it a code name. Von Neumann chose the name
“Monte Carlo.” Since that time, this method of simulation has been called the
Monte Carlo Method.

William Feller indicated the possibilities of using computer simulations to illus-
trate basic concepts in probability in his book An Introduction to Probability Theory
and Its Applications. In discussing the problem about the number of times in the
lead in the game of “heads or tails” Feller writes:

The results concerning fluctuations in coin tossing show that widely
held beliefs about the law of large numbers are fallacious. These results
are so amazing and so at variance with common intuition that even
sophisticated colleagues doubted that coins actually misbehave as theory
predicts. The record of a simulated experiment is therefore included.6

Feller provides a plot showing the result of 10,000 plays of heads or tails similar to
that in Figure 1.5.

The martingale betting system described in Exercise 10 has a long and interest-
ing history. Russell Barnhart pointed out to the authors that its use can be traced
back at least to 1754, when Casanova, writing in his memoirs, History of My Life,
writes

She [Casanova’s mistress] made me promise to go to the casino [the
Ridotto in Venice] for money to play in partnership with her. I went
there and took all the gold I found, and, determinedly doubling my
stakes according to the system known as the martingale, I won three or
four times a day during the rest of the Carnival. I never lost the sixth
card. If I had lost it, I should have been out of funds, which amounted
to two thousand zecchini.7

Even if there were no zeros on the roulette wheel so the game was perfectly fair,
the martingale system, or any other system for that matter, cannot make the game
into a favorable game. The idea that a fair game remains fair and unfair games
remain unfair under gambling systems has been exploited by mathematicians to
obtain important results in the study of probability. We will introduce the general
concept of a martingale in Chapter 6.

The word martingale itself also has an interesting history. The origin of the
word is obscure. A recent version of the Oxford English Dictionary gives examples

5D. D. McCracken, “The Monte Carlo Method,” Scientific American, vol. 192 (May 1955),
p. 90.

6W. Feller, Introduction to Probability Theory and its Applications, vol. 1, 3rd ed. (New York:
John Wiley & Sons, 1968), p. xi.

7G. Casanova, History of My Life, vol. IV, Chap. 7, trans. W. R. Trask (New York: Harcourt-
Brace, 1968), p. 124.
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of its use in the early 1600s and says that its probable origin is the reference in
Rabelais’s Book One, Chapter 20:

Everything was done as planned, the only thing being that Gargantua
doubted if they would be able to find, right away, breeches suitable to
the old fellow’s legs; he was doubtful, also, as to what cut would be most
becoming to the orator—the martingale, which has a draw-bridge effect
in the seat, to permit doing one’s business more easily; the sailor-style,
which affords more comfort for the kidneys; the Swiss, which is warmer
on the belly; or the codfish-tail, which is cooler on the loins.8

Dominic Lusinchi noted an earlier occurrence of the word martingale. Accord-
ing to the French dictionary Le Petit Robert , the word comes from the Provençal
word “martegalo,” which means “from Martigues.” Martigues is a town due west of
Merseille. The dictionary gives the example of “chausses à la martinguale” (which
means Martigues-style breeches) and the date 1491.

In modern uses martingale has several different meanings, all related to holding
down, in addition to the gambling use. For example, it is a strap on a horse’s
harness used to hold down the horse’s head, and also part of a sailing rig used to
hold down the bowsprit.

The Labouchere system described in Exercise 9 is named after Henry du Pre
Labouchere (1831–1912), an English journalist and member of Parliament. Labou-
chere attributed the system to Condorcet. Condorcet (1743–1794) was a political
leader during the time of the French revolution who was interested in applying prob-
ability theory to economics and politics. For example, he calculated the probability
that a jury using majority vote will give a correct decision if each juror has the
same probability of deciding correctly. His writings provided a wealth of ideas on
how probability might be applied to human affairs.9

Exercises

1 Modify the program CoinTosses to toss a coin n times and print out after
every 100 tosses the proportion of heads minus 1/2. Do these numbers appear
to approach 0 as n increases? Modify the program again to print out, every
100 times, both of the following quantities: the proportion of heads minus 1/2,
and the number of heads minus half the number of tosses. Do these numbers
appear to approach 0 as n increases?

2 Modify the program CoinTosses so that it tosses a coin n times and records
whether or not the proportion of heads is within .1 of .5 (i.e., between .4
and .6). Have your program repeat this experiment 100 times. About how
large must n be so that approximately 95 out of 100 times the proportion of
heads is between .4 and .6?

8Quoted in the Portable Rabelais, ed. S. Putnam (New York: Viking, 1946), p. 113.
9Le Marquise de Condorcet, Essai sur l’Application de l’Analyse à la Probabilité dès Décisions

Rendues a la Pluralité des Voix (Paris: Imprimerie Royale, 1785).
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3 In the early 1600s, Galileo was asked to explain the fact that, although the
number of triples of integers from 1 to 6 with sum 9 is the same as the number
of such triples with sum 10, when three dice are rolled, a 9 seemed to come
up less often than a 10—supposedly in the experience of gamblers.

(a) Write a program to simulate the roll of three dice a large number of
times and keep track of the proportion of times that the sum is 9 and
the proportion of times it is 10.

(b) Can you conclude from your simulations that the gamblers were correct?

4 In raquetball, a player continues to serve as long as she is winning; a point
is scored only when a player is serving and wins the volley. The first player
to win 21 points wins the game. Assume that you serve first and have a
probability .6 of winning a volley when you serve and probability .5 when
your opponent serves. Estimate, by simulation, the probability that you will
win a game.

5 Consider the bet that all three dice will turn up sixes at least once in n rolls
of three dice. Calculate f(n), the probability of at least one triple-six when
three dice are rolled n times. Determine the smallest value of n necessary for
a favorable bet that a triple-six will occur when three dice are rolled n times.
(DeMoivre would say it should be about 216 log 2 = 149.7 and so would answer
150—see Exercise 1.2.17. Do you agree with him?)

6 In Las Vegas, a roulette wheel has 38 slots numbered 0, 00, 1, 2, . . . , 36. The
0 and 00 slots are green and half of the remaining 36 slots are red and half
are black. A croupier spins the wheel and throws in an ivory ball. If you bet
1 dollar on red, you win 1 dollar if the ball stops in a red slot and otherwise
you lose 1 dollar. Write a program to find the total winnings for a player who
makes 1000 bets on red.

7 Another form of bet for roulette is to bet that a specific number (say 17) will
turn up. If the ball stops on your number, you get your dollar back plus 35
dollars. If not, you lose your dollar. Write a program that will plot your
winnings when you make 500 plays of roulette at Las Vegas, first when you
bet each time on red (see Exercise 6), and then for a second visit to Las
Vegas when you make 500 plays betting each time on the number 17. What
differences do you see in the graphs of your winnings on these two occasions?

8 An astute student noticed that, in our simulation of the game of heads or tails
(see Example 1.4), the proportion of times the player is always in the lead is
very close to the proportion of times that the player’s total winnings end up 0.
Work out these probabilities by enumeration of all cases for two tosses and
for four tosses, and see if you think that these probabilities are, in fact, the
same.

9 The Labouchere system for roulette is played as follows. Write down a list of
numbers, usually 1, 2, 3, 4. Bet the sum of the first and last, 1 + 4 = 5, on
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red. If you win, delete the first and last numbers from your list. If you lose,
add the amount that you last bet to the end of your list. Then use the new
list and bet the sum of the first and last numbers (if there is only one number,
bet that amount). Continue until your list becomes empty. Show that, if this
happens, you win the sum, 1 + 2 + 3 + 4 = 10, of your original list. Simulate
this system and see if you do always stop and, hence, always win. If so, why
is this not a foolproof gambling system?

10 Another well-known gambling system is the martingale doubling system. Sup-
pose that you are betting on red to turn up in roulette. Every time you win,
bet 1 dollar next time. Every time you lose, double your previous bet. Suppose
that you use this system until you have won at least 5 dollars or you have lost
more than 100 dollars. Write a program to simulate this and play it a number
of times and see how you do. In his book The Newcomes, W. M. Thack-
eray remarks “You have not played as yet? Do not do so; above all avoid a
martingale if you do.”10 Was this good advice?

11 Modify the program HTSimulation so that it keeps track of the maximum of
Peter’s winnings in each game of 40 tosses. Have your program print out the
proportion of times that your total winnings take on values 0, 2, 4, . . . , 40.
Calculate the corresponding exact probabilities for games of two tosses and
four tosses.

12 In an upcoming national election for the President of the United States, a
pollster plans to predict the winner of the popular vote by taking a random
sample of 1000 voters and declaring that the winner will be the one obtaining
the most votes in his sample. Suppose that 48 percent of the voters plan
to vote for the Republican candidate and 52 percent plan to vote for the
Democratic candidate. To get some idea of how reasonable the pollster’s
plan is, write a program to make this prediction by simulation. Repeat the
simulation 100 times and see how many times the pollster’s prediction would
come true. Repeat your experiment, assuming now that 49 percent of the
population plan to vote for the Republican candidate; first with a sample of
1000 and then with a sample of 3000. (The Gallup Poll uses about 3000.)
(This idea is discussed further in Chapter 9, Section 9.1.)

13 The psychologist Tversky and his colleagues11 say that about four out of five
people will answer (a) to the following question:

A certain town is served by two hospitals. In the larger hospital about 45
babies are born each day, and in the smaller hospital 15 babies are born each
day. Although the overall proportion of boys is about 50 percent, the actual
proportion at either hospital may be more or less than 50 percent on any day.

10W. M. Thackerey, The Newcomes (London: Bradbury and Evans, 1854–55).
11See K. McKean, “Decisions, Decisions,” Discover, June 1985, pp. 22–31. Kevin McKean,

Discover Magazine, c©1987 Family Media, Inc. Reprinted with permission. This popular article
reports on the work of Tverksy et. al. in Judgement Under Uncertainty: Heuristics and Biases
(Cambridge: Cambridge University Press, 1982).
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At the end of a year, which hospital will have the greater number of days on
which more than 60 percent of the babies born were boys?

(a) the large hospital

(b) the small hospital

(c) neither—the number of days will be about the same.

Assume that the probability that a baby is a boy is .5 (actual estimates make
this more like .513). Decide, by simulation, what the right answer is to the
question. Can you suggest why so many people go wrong?

14 You are offered the following game. A fair coin will be tossed until the first
time it comes up heads. If this occurs on the jth toss you are paid 2j dollars.
You are sure to win at least 2 dollars so you should be willing to pay to play
this game—but how much? Few people would pay as much as 10 dollars to
play this game. See if you can decide, by simulation, a reasonable amount
that you would be willing to pay, per game, if you will be allowed to make
a large number of plays of the game. Does the amount that you would be
willing to pay per game depend upon the number of plays that you will be
allowed?

15 Tversky and his colleagues12 studied the records of 48 of the Philadelphia
76ers basketball games in the 1980–81 season to see if a player had times
when he was hot and every shot went in, and other times when he was cold
and barely able to hit the backboard. The players estimated that they were
about 25 percent more likely to make a shot after a hit than after a miss.
In fact, the opposite was true—the 76ers were 6 percent more likely to score
after a miss than after a hit. Tversky reports that the number of hot and cold
streaks was about what one would expect by purely random effects. Assuming
that a player has a fifty-fifty chance of making a shot and makes 20 shots a
game, estimate by simulation the proportion of the games in which the player
will have a streak of 5 or more hits.

16 Estimate, by simulation, the average number of children there would be in
a family if all people had children until they had a boy. Do the same if all
people had children until they had at least one boy and at least one girl. How
many more children would you expect to find under the second scheme than
under the first in 100,000 families? (Assume that boys and girls are equally
likely.)

17 Mathematicians have been known to get some of the best ideas while sitting in
a cafe, riding on a bus, or strolling in the park. In the early 1900s the famous
mathematician George Pólya lived in a hotel near the woods in Zurich. He
liked to walk in the woods and think about mathematics. Pólya describes the
following incident:

12ibid.
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0 1 2 3-1-2-3

c.  Random walk in three dimensions.b.  Random walk in two dimensions.

a.  Random walk in one dimension.

Figure 1.6: Random walk.
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At the hotel there lived also some students with whom I usually
took my meals and had friendly relations. On a certain day one
of them expected the visit of his fiancée, what (sic) I knew, but
I did not foresee that he and his fiancée would also set out for a
stroll in the woods, and then suddenly I met them there. And then
I met them the same morning repeatedly, I don’t remember how
many times, but certainly much too often and I felt embarrassed:
It looked as if I was snooping around which was, I assure you, not
the case.13

This set him to thinking about whether random walkers were destined to
meet.

Pólya considered random walkers in one, two, and three dimensions. In one
dimension, he envisioned the walker on a very long street. At each intersec-
tion the walker flips a fair coin to decide which direction to walk next (see
Figure 1.6a). In two dimensions, the walker is walking on a grid of streets, and
at each intersection he chooses one of the four possible directions with equal
probability (see Figure 1.6b). In three dimensions (we might better speak of
a random climber), the walker moves on a three-dimensional grid, and at each
intersection there are now six different directions that the walker may choose,
each with equal probability (see Figure 1.6c).

The reader is referred to Section 12.1, where this and related problems are
discussed.

(a) Write a program to simulate a random walk in one dimension starting
at 0. Have your program print out the lengths of the times between
returns to the starting point (returns to 0). See if you can guess from
this simulation the answer to the following question: Will the walker
always return to his starting point eventually or might he drift away
forever?

(b) The paths of two walkers in two dimensions who meet after n steps can
be considered to be a single path that starts at (0, 0) and returns to (0, 0)
after 2n steps. This means that the probability that two random walkers
in two dimensions meet is the same as the probability that a single walker
in two dimensions ever returns to the starting point. Thus the question
of whether two walkers are sure to meet is the same as the question of
whether a single walker is sure to return to the starting point.
Write a program to simulate a random walk in two dimensions and see
if you think that the walker is sure to return to (0, 0). If so, Pólya would
be sure to keep meeting his friends in the park. Perhaps by now you
have conjectured the answer to the question: Is a random walker in one
or two dimensions sure to return to the starting point? Pólya answered

13G. Pólya, “Two Incidents,” Scientists at Work: Festschrift in Honour of Herman Wold, ed.
T. Dalenius, G. Karlsson, and S. Malmquist (Uppsala: Almquist & Wiksells Boktryckeri AB,
1970).
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this question for dimensions one, two, and three. He established the
remarkable result that the answer is yes in one and two dimensions and
no in three dimensions.

(c) Write a program to simulate a random walk in three dimensions and see
whether, from this simulation and the results of (a) and (b), you could
have guessed Pólya’s result.

1.2 Discrete Probability Distributions

In this book we shall study many different experiments from a probabilistic point of
view. What is involved in this study will become evident as the theory is developed
and examples are analyzed. However, the overall idea can be described and illus-
trated as follows: to each experiment that we consider there will be associated a
random variable, which represents the outcome of any particular experiment. The
set of possible outcomes is called the sample space. In the first part of this section,
we will consider the case where the experiment has only finitely many possible out-
comes, i.e., the sample space is finite. We will then generalize to the case that the
sample space is either finite or countably infinite. This leads us to the following
definition.

Random Variables and Sample Spaces

Definition 1.1 Suppose we have an experiment whose outcome depends on chance.
We represent the outcome of the experiment by a capital Roman letter, such as X,
called a random variable. The sample space of the experiment is the set of all
possible outcomes. If the sample space is either finite or countably infinite, the
random variable is said to be discrete. 2

We generally denote a sample space by the capital Greek letter Ω. As stated above,
in the correspondence between an experiment and the mathematical theory by which
it is studied, the sample space Ω corresponds to the set of possible outcomes of the
experiment.

We now make two additional definitions. These are subsidiary to the definition
of sample space and serve to make precise some of the common terminology used
in conjunction with sample spaces. First of all, we define the elements of a sample
space to be outcomes. Second, each subset of a sample space is defined to be an
event . Normally, we shall denote outcomes by lower case letters and events by
capital letters.

Example 1.6 A die is rolled once. We let X denote the outcome of this experiment.
Then the sample space for this experiment is the 6-element set

Ω = {1, 2, 3, 4, 5, 6} ,
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where each outcome i, for i = 1, . . . , 6, corresponds to the number of dots on the
face which turns up. The event

E = {2, 4, 6}

corresponds to the statement that the result of the roll is an even number. The
event E can also be described by saying that X is even. Unless there is reason to
believe the die is loaded, the natural assumption is that every outcome is equally
likely. Adopting this convention means that we assign a probability of 1/6 to each
of the six outcomes, i.e., m(i) = 1/6, for 1 ≤ i ≤ 6. 2

Distribution Functions

We next describe the assignment of probabilities. The definitions are motivated by
the example above, in which we assigned to each outcome of the sample space a
nonnegative number such that the sum of the numbers assigned is equal to 1.

Definition 1.2 Let X be a random variable which denotes the value of the out-
come of a certain experiment, and assume that this experiment has only finitely
many possible outcomes. Let Ω be the sample space of the experiment (i.e., the
set of all possible values of X, or equivalently, the set of all possible outcomes of
the experiment.) A distribution function for X is a real-valued function m whose
domain is Ω and which satisfies:

1. m(ω) ≥ 0 , for all ω ∈ Ω , and

2.
∑

ω∈Ω

m(ω) = 1 .

For any subset E of Ω, we define the probability of E to be the number P (E) given
by

P (E) =
∑
ω∈E

m(ω) .

2

Example 1.7 Consider an experiment in which a coin is tossed twice. Let X be
the random variable which corresponds to this experiment. We note that there are
several ways to record the outcomes of this experiment. We could, for example,
record the two tosses, in the order in which they occurred. In this case, we have
Ω ={HH,HT,TH,TT}. We could also record the outcomes by simply noting the
number of heads that appeared. In this case, we have Ω ={0,1,2}. Finally, we could
record the two outcomes, without regard to the order in which they occurred. In
this case, we have Ω ={HH,HT,TT}.

We will use, for the moment, the first of the sample spaces given above. We
will assume that all four outcomes are equally likely, and define the distribution
function m(ω) by

m(HH) = m(HT) = m(TH) = m(TT) =
1
4

.
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Let E ={HH,HT,TH} be the event that at least one head comes up. Then, the
probability of E can be calculated as follows:

P (E) = m(HH) + m(HT) + m(TH)

=
1
4

+
1
4

+
1
4

=
3
4

.

Similarly, if F ={HH,HT} is the event that heads comes up on the first toss,
then we have

P (F ) = m(HH) + m(HT)

=
1
4

+
1
4

=
1
2

.

2

Example 1.8 (Example 1.6 continued) The sample space for the experiment in
which the die is rolled is the 6-element set Ω = {1, 2, 3, 4, 5, 6}. We assumed that
the die was fair, and we chose the distribution function defined by

m(i) =
1
6
, for i = 1, . . . , 6 .

If E is the event that the result of the roll is an even number, then E = {2, 4, 6}
and

P (E) = m(2) + m(4) + m(6)

=
1
6

+
1
6

+
1
6

=
1
2

.

2

Notice that it is an immediate consequence of the above definitions that, for
every ω ∈ Ω,

P ({ω}) = m(ω) .

That is, the probability of the elementary event {ω}, consisting of a single outcome
ω, is equal to the value m(ω) assigned to the outcome ω by the distribution function.

Example 1.9 Three people, A, B, and C, are running for the same office, and we
assume that one and only one of them wins. The sample space may be taken as the
3-element set Ω ={A,B,C} where each element corresponds to the outcome of that
candidate’s winning. Suppose that A and B have the same chance of winning, but
that C has only 1/2 the chance of A or B. Then we assign

m(A) = m(B) = 2m(C) .

Since
m(A) + m(B) + m(C) = 1 ,
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we see that
2m(C) + 2m(C) + m(C) = 1 ,

which implies that 5m(C) = 1. Hence,

m(A) =
2
5

, m(B) =
2
5

, m(C) =
1
5

.

Let E be the event that either A or C wins. Then E ={A,C}, and

P (E) = m(A) + m(C) =
2
5

+
1
5

=
3
5

.

2

In many cases, events can be described in terms of other events through the use
of the standard constructions of set theory. We will briefly review the definitions of
these constructions. The reader is referred to Figure 1.7 for Venn diagrams which
illustrate these constructions.

Let A and B be two sets. Then the union of A and B is the set

A ∪B = {x |x ∈ A or x ∈ B} .

The intersection of A and B is the set

A ∩B = {x |x ∈ A and x ∈ B} .

The difference of A and B is the set

A−B = {x |x ∈ A and x 6∈ B} .

The set A is a subset of B, written A ⊂ B, if every element of A is also an element
of B. Finally, the complement of A is the set

Ã = {x |x ∈ Ω and x 6∈ A} .

The reason that these constructions are important is that it is typically the
case that complicated events described in English can be broken down into simpler
events using these constructions. For example, if A is the event that “it will snow
tomorrow and it will rain the next day,” B is the event that “it will snow tomorrow,”
and C is the event that “it will rain two days from now,” then A is the intersection
of the events B and C. Similarly, if D is the event that “it will snow tomorrow or
it will rain the next day,” then D = B ∪ C. (Note that care must be taken here,
because sometimes the word “or” in English means that exactly one of the two
alternatives will occur. The meaning is usually clear from context. In this book,
we will always use the word “or” in the inclusive sense, i.e., A or B means that at
least one of the two events A, B is true.) The event B̃ is the event that “it will not
snow tomorrow.” Finally, if E is the event that “it will snow tomorrow but it will
not rain the next day,” then E = B − C.
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Figure 1.7: Basic set operations.

Properties

Theorem 1.1 The probabilities assigned to events by a distribution function on a
sample space Ω satisfy the following properties:

1. P (E) ≥ 0 for every E ⊂ Ω .

2. P (Ω) = 1 .

3. If E ⊂ F ⊂ Ω, then P (E) ≤ P (F ) .

4. If A and B are disjoint subsets of Ω, then P (A ∪B) = P (A) + P (B) .

5. P (Ã) = 1− P (A) for every A ⊂ Ω .

Proof. For any event E the probability P (E) is determined from the distribution
m by

P (E) =
∑
ω∈E

m(ω) ,

for every E ⊂ Ω. Since the function m is nonnegative, it follows that P (E) is also
nonnegative. Thus, Property 1 is true.

Property 2 is proved by the equations

P (Ω) =
∑
ω∈Ω

m(ω) = 1 .

Suppose that E ⊂ F ⊂ Ω. Then every element ω that belongs to E also belongs
to F . Therefore, ∑

ω∈E

m(ω) ≤
∑
ω∈F

m(ω) ,

since each term in the left-hand sum is in the right-hand sum, and all the terms in
both sums are non-negative. This implies that

P (E) ≤ P (F ) ,

and Property 3 is proved.
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Suppose next that A and B are disjoint subsets of Ω. Then every element ω of
A ∪B lies either in A and not in B or in B and not in A. It follows that

P (A ∪B) =
∑

ω∈A∪B m(ω) =
∑

ω∈A m(ω) +
∑

ω∈B m(ω)

= P (A) + P (B) ,

and Property 4 is proved.
Finally, to prove Property 5, consider the disjoint union

Ω = A ∪ Ã .

Since P (Ω) = 1, the property of disjoint additivity (Property 4) implies that

1 = P (A) + P (Ã) ,

whence P (Ã) = 1− P (A). 2

It is important to realize that Property 4 in Theorem 1.1 can be extended to
more than two sets. The general finite additivity property is given by the following
theorem.

Theorem 1.2 If A1, . . . , An are pairwise disjoint subsets of Ω (i.e., no two of the
Ai’s have an element in common), then

P (A1 ∪ · · · ∪An) =
n∑

i=1

P (Ai) .

Proof. Let ω be any element in the union

A1 ∪ · · · ∪An .

Then m(ω) occurs exactly once on each side of the equality in the statement of the
theorem. 2

We shall often use the following consequence of the above theorem.

Theorem 1.3 Let A1, . . . , An be pairwise disjoint events with Ω = A1 ∪ · · · ∪An,
and let E be any event. Then

P (E) =
n∑

i=1

P (E ∩Ai) .

Proof. The sets E ∩ A1, . . . , E ∩ An are pairwise disjoint, and their union is the
set E. The result now follows from Theorem 1.2. 2
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Corollary 1.1 For any two events A and B,

P (A) = P (A ∩B) + P (A ∩ B̃) .

2

Property 4 can be generalized in another way. Suppose that A and B are subsets
of Ω which are not necessarily disjoint. Then:

Theorem 1.4 If A and B are subsets of Ω, then

P (A ∪B) = P (A) + P (B)− P (A ∩B) . (1.1)

Proof. The left side of Equation 1.1 is the sum of m(ω) for ω in either A or B. We
must show that the right side of Equation 1.1 also adds m(ω) for ω in A or B. If ω

is in exactly one of the two sets, then it is counted in only one of the three terms
on the right side of Equation 1.1. If it is in both A and B, it is added twice from
the calculations of P (A) and P (B) and subtracted once for P (A ∩ B). Thus it is
counted exactly once by the right side. Of course, if A ∩B = ∅, then Equation 1.1
reduces to Property 4. (Equation 1.1 can also be generalized; see Theorem 3.8.) 2

Tree Diagrams

Example 1.10 Let us illustrate the properties of probabilities of events in terms
of three tosses of a coin. When we have an experiment which takes place in stages
such as this, we often find it convenient to represent the outcomes by a tree diagram
as shown in Figure 1.8.

A path through the tree corresponds to a possible outcome of the experiment.
For the case of three tosses of a coin, we have eight paths ω1, ω2, . . . , ω8 and,
assuming each outcome to be equally likely, we assign equal weight, 1/8, to each
path. Let E be the event “at least one head turns up.” Then Ẽ is the event “no
heads turn up.” This event occurs for only one outcome, namely, ω8 = TTT. Thus,
Ẽ = {TTT} and we have

P (Ẽ) = P ({TTT}) = m(TTT) =
1
8

.

By Property 5 of Theorem 1.1,

P (E) = 1− P (Ẽ) = 1− 1
8

=
7
8

.

Note that we shall often find it is easier to compute the probability that an event
does not happen rather than the probability that it does. We then use Property 5
to obtain the desired probability.
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Figure 1.8: Tree diagram for three tosses of a coin.

Let A be the event “the first outcome is a head,” and B the event “the second
outcome is a tail.” By looking at the paths in Figure 1.8, we see that

P (A) = P (B) =
1
2

.

Moreover, A∩B = {ω3, ω4}, and so P (A∩B) = 1/4. Using Theorem 1.4, we obtain

P (A ∪B) = P (A) + P (B)− P (A ∩B)

=
1
2

+
1
2
− 1

4
=

3
4

.

Since A ∪B is the 6-element set,

A ∪B = {HHH,HHT,HTH,HTT,TTH,TTT} ,

we see that we obtain the same result by direct enumeration. 2

In our coin tossing examples and in the die rolling example, we have assigned
an equal probability to each possible outcome of the experiment. Corresponding to
this method of assigning probabilities, we have the following definitions.

Uniform Distribution

Definition 1.3 The uniform distribution on a sample space Ω containing n ele-
ments is the function m defined by

m(ω) =
1
n

,

for every ω ∈ Ω. 2
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It is important to realize that when an experiment is analyzed to describe its
possible outcomes, there is no single correct choice of sample space. For the ex-
periment of tossing a coin twice in Example 1.2, we selected the 4-element set
Ω ={HH,HT,TH,TT} as a sample space and assigned the uniform distribution func-
tion. These choices are certainly intuitively natural. On the other hand, for some
purposes it may be more useful to consider the 3-element sample space Ω̄ = {0, 1, 2}
in which 0 is the outcome “no heads turn up,” 1 is the outcome “exactly one head
turns up,” and 2 is the outcome “two heads turn up.” The distribution function m̄

on Ω̄ defined by the equations

m̄(0) =
1
4

, m̄(1) =
1
2

, m̄(2) =
1
4

is the one corresponding to the uniform probability density on the original sample
space Ω. Notice that it is perfectly possible to choose a different distribution func-
tion. For example, we may consider the uniform distribution function on Ω̄, which
is the function q̄ defined by

q̄(0) = q̄(1) = q̄(2) =
1
3

.

Although q̄ is a perfectly good distribution function, it is not consistent with ob-
served data on coin tossing.

Example 1.11 Consider the experiment that consists of rolling a pair of dice. We
take as the sample space Ω the set of all ordered pairs (i, j) of integers with 1 ≤ i ≤ 6
and 1 ≤ j ≤ 6. Thus,

Ω = { (i, j) : 1 ≤ i, j ≤ 6 } .

(There is at least one other “reasonable” choice for a sample space, namely the set
of all unordered pairs of integers, each between 1 and 6. For a discussion of why
we do not use this set, see Example 3.14.) To determine the size of Ω, we note
that there are six choices for i, and for each choice of i there are six choices for j,
leading to 36 different outcomes. Let us assume that the dice are not loaded. In
mathematical terms, this means that we assume that each of the 36 outcomes is
equally likely, or equivalently, that we adopt the uniform distribution function on
Ω by setting

m((i, j)) =
1
36

, 1 ≤ i, j ≤ 6 .

What is the probability of getting a sum of 7 on the roll of two dice—or getting a
sum of 11? The first event, denoted by E, is the subset

E = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)} .

A sum of 11 is the subset F given by

F = {(5, 6), (6, 5)} .

Consequently,
P (E) =

∑
ω∈E m(ω) = 6 · 1

36 = 1
6 ,

P (F ) =
∑

ω∈F m(ω) = 2 · 1
36 = 1

18 .
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What is the probability of getting neither snakeeyes (double ones) nor boxcars
(double sixes)? The event of getting either one of these two outcomes is the set

E = {(1, 1), (6, 6)} .

Hence, the probability of obtaining neither is given by

P (Ẽ) = 1− P (E) = 1− 2
36

=
17
18

.

2

In the above coin tossing and the dice rolling experiments, we have assigned an
equal probability to each outcome. That is, in each example, we have chosen the
uniform distribution function. These are the natural choices provided the coin is a
fair one and the dice are not loaded. However, the decision as to which distribution
function to select to describe an experiment is not a part of the basic mathemat-
ical theory of probability. The latter begins only when the sample space and the
distribution function have already been defined.

Determination of Probabilities

It is important to consider ways in which probability distributions are determined
in practice. One way is by symmetry. For the case of the toss of a coin, we do not
see any physical difference between the two sides of a coin that should affect the
chance of one side or the other turning up. Similarly, with an ordinary die there
is no essential difference between any two sides of the die, and so by symmetry we
assign the same probability for any possible outcome. In general, considerations
of symmetry often suggest the uniform distribution function. Care must be used
here. We should not always assume that, just because we do not know any reason
to suggest that one outcome is more likely than another, it is appropriate to assign
equal probabilities. For example, consider the experiment of guessing the sex of
a newborn child. It has been observed that the proportion of newborn children
who are boys is about .513. Thus, it is more appropriate to assign a distribution
function which assigns probability .513 to the outcome boy and probability .487 to
the outcome girl than to assign probability 1/2 to each outcome. This is an example
where we use statistical observations to determine probabilities. Note that these
probabilities may change with new studies and may vary from country to country.
Genetic engineering might even allow an individual to influence this probability for
a particular case.

Odds

Statistical estimates for probabilities are fine if the experiment under consideration
can be repeated a number of times under similar circumstances. However, assume
that, at the beginning of a football season, you want to assign a probability to the
event that Dartmouth will beat Harvard. You really do not have data that relates to
this year’s football team. However, you can determine your own personal probability
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by seeing what kind of a bet you would be willing to make. For example, suppose
that you are willing to make a 1 dollar bet giving 2 to 1 odds that Dartmouth will
win. Then you are willing to pay 2 dollars if Dartmouth loses in return for receiving
1 dollar if Dartmouth wins. This means that you think the appropriate probability
for Dartmouth winning is 2/3.

Let us look more carefully at the relation between odds and probabilities. Sup-
pose that we make a bet at r to 1 odds that an event E occurs. This means that
we think that it is r times as likely that E will occur as that E will not occur. In
general, r to s odds will be taken to mean the same thing as r/s to 1, i.e., the ratio
between the two numbers is the only quantity of importance when stating odds.

Now if it is r times as likely that E will occur as that E will not occur, then the
probability that E occurs must be r/(r + 1), since we have

P (E) = r P (Ẽ)

and
P (E) + P (Ẽ) = 1 .

In general, the statement that the odds are r to s in favor of an event E occurring
is equivalent to the statement that

P (E) =
r/s

(r/s) + 1

=
r

r + s
.

If we let P (E) = p, then the above equation can easily be solved for r/s in terms of
p; we obtain r/s = p/(1− p). We summarize the above discussion in the following
definition.

Definition 1.4 If P (E) = p, the odds in favor of the event E occurring are r : s (r
to s) where r/s = p/(1− p). If r and s are given, then p can be found by using the
equation p = r/(r + s). 2

Example 1.12 (Example 1.9 continued) In Example 1.9 we assigned probability
1/5 to the event that candidate C wins the race. Thus the odds in favor of C
winning are 1/5 : 4/5. These odds could equally well have been written as 1 : 4,
2 : 8, and so forth. A bet that C wins is fair if we receive 4 dollars if C wins and
pay 1 dollar if C loses. 2

Infinite Sample Spaces

If a sample space has an infinite number of points, then the way that a distribution
function is defined depends upon whether or not the sample space is countable. A
sample space is countably infinite if the elements can be counted, i.e., can be put
in one-to-one correspondence with the positive integers, and uncountably infinite
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otherwise. Infinite sample spaces require new concepts in general (see Chapter 2),
but countably infinite spaces do not. If

Ω = {ω1, ω2, ω3, . . .}

is a countably infinite sample space, then a distribution function is defined exactly
as in Definition 1.2, except that the sum must now be a convergent infinite sum.
Theorem 1.1 is still true, as are its extensions Theorems 1.2 and 1.4. One thing we
cannot do on a countably infinite sample space that we could do on a finite sample
space is to define a uniform distribution function as in Definition 1.3. You are asked
in Exercise 20 to explain why this is not possible.

Example 1.13 A coin is tossed until the first time that a head turns up. Let the
outcome of the experiment, ω, be the first time that a head turns up. Then the
possible outcomes of our experiment are

Ω = {1, 2, 3, . . .} .

Note that even though the coin could come up tails every time we have not allowed
for this possibility. We will explain why in a moment. The probability that heads
comes up on the first toss is 1/2. The probability that tails comes up on the first
toss and heads on the second is 1/4. The probability that we have two tails followed
by a head is 1/8, and so forth. This suggests assigning the distribution function
m(n) = 1/2n for n = 1, 2, 3, . . . . To see that this is a distribution function we
must show that ∑

ω

m(ω) =
1
2

+
1
4

+
1
8

+ · · · = 1 .

That this is true follows from the formula for the sum of a geometric series,

1 + r + r2 + r3 + · · · = 1
1− r

,

or
r + r2 + r3 + r4 + · · · = r

1− r
, (1.2)

for −1 < r < 1.
Putting r = 1/2, we see that we have a probability of 1 that the coin eventu-

ally turns up heads. The possible outcome of tails every time has to be assigned
probability 0, so we omit it from our sample space of possible outcomes.

Let E be the event that the first time a head turns up is after an even number
of tosses. Then

E = {2, 4, 6, 8, . . .} ,

and
P (E) =

1
4

+
1
16

+
1
64

+ · · · .

Putting r = 1/4 in Equation 1.2 see that

P (E) =
1/4

1− 1/4
=

1
3

.

Thus the probability that a head turns up for the first time after an even number
of tosses is 1/3 and after an odd number of tosses is 2/3. 2
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Historical Remarks

An interesting question in the history of science is: Why was probability not devel-
oped until the sixteenth century? We know that in the sixteenth century problems
in gambling and games of chance made people start to think about probability. But
gambling and games of chance are almost as old as civilization itself. In ancient
Egypt (at the time of the First Dynasty, ca. 3500 B.C.) a game now called “Hounds
and Jackals” was played. In this game the movement of the hounds and jackals was
based on the outcome of the roll of four-sided dice made out of animal bones called
astragali. Six-sided dice made of a variety of materials date back to the sixteenth
century B.C. Gambling was widespread in ancient Greece and Rome. Indeed, in the
Roman Empire it was sometimes found necessary to invoke laws against gambling.
Why, then, were probabilities not calculated until the sixteenth century?

Several explanations have been advanced for this late development. One is that
the relevant mathematics was not developed and was not easy to develop. The
ancient mathematical notation made numerical calculation complicated, and our
familiar algebraic notation was not developed until the sixteenth century. However,
as we shall see, many of the combinatorial ideas needed to calculate probabilities
were discussed long before the sixteenth century. Since many of the chance events
of those times had to do with lotteries relating to religious affairs, it has been
suggested that there may have been religious barriers to the study of chance and
gambling. Another suggestion is that a stronger incentive, such as the development
of commerce, was necessary. However, none of these explanations seems completely
satisfactory, and people still wonder why it took so long for probability to be studied
seriously. An interesting discussion of this problem can be found in Hacking.14

The first person to calculate probabilities systematically was Gerolamo Cardano
(1501–1576) in his book Liber de Ludo Aleae. This was translated from the Latin
by Gould and appears in the book Cardano: The Gambling Scholar by Ore.15 Ore
provides a fascinating discussion of the life of this colorful scholar with accounts
of his interests in many different fields, including medicine, astrology, and mathe-
matics. You will also find there a detailed account of Cardano’s famous battle with
Tartaglia over the solution to the cubic equation.

In his book on probability Cardano dealt only with the special case that we have
called the uniform distribution function. This restriction to equiprobable outcomes
was to continue for a long time. In this case Cardano realized that the probability
that an event occurs is the ratio of the number of favorable outcomes to the total
number of outcomes.

Many of Cardano’s examples dealt with rolling dice. Here he realized that the
outcomes for two rolls should be taken to be the 36 ordered pairs (i, j) rather than
the 21 unordered pairs. This is a subtle point that was still causing problems much
later for other writers on probability. For example, in the eighteenth century the
famous French mathematician d’Alembert, author of several works on probability,
claimed that when a coin is tossed twice the number of heads that turn up would

14I. Hacking, The Emergence of Probability (Cambridge: Cambridge University Press, 1975).
15O. Ore, Cardano: The Gambling Scholar (Princeton: Princeton University Press, 1953).
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be 0, 1, or 2, and hence we should assign equal probabilities for these three possible
outcomes.16 Cardano chose the correct sample space for his dice problems and
calculated the correct probabilities for a variety of events.

Cardano’s mathematical work is interspersed with a lot of advice to the potential
gambler in short paragraphs, entitled, for example: “Who Should Play and When,”
“Why Gambling Was Condemned by Aristotle,” “Do Those Who Teach Also Play
Well?” and so forth. In a paragraph entitled “The Fundamental Principle of Gam-
bling,” Cardano writes:

The most fundamental principle of all in gambling is simply equal con-
ditions, e.g., of opponents, of bystanders, of money, of situation, of the
dice box, and of the die itself. To the extent to which you depart from
that equality, if it is in your opponent’s favor, you are a fool, and if in
your own, you are unjust.17

Cardano did make mistakes, and if he realized it later he did not go back and
change his error. For example, for an event that is favorable in three out of four
cases, Cardano assigned the correct odds 3 : 1 that the event will occur. But then he
assigned odds by squaring these numbers (i.e., 9 : 1) for the event to happen twice in
a row. Later, by considering the case where the odds are 1 : 1, he realized that this
cannot be correct and was led to the correct result that when f out of n outcomes
are favorable, the odds for a favorable outcome twice in a row are f2 : n2− f2. Ore
points out that this is equivalent to the realization that if the probability that an
event happens in one experiment is p, the probability that it happens twice is p2.
Cardano proceeded to establish that for three successes the formula should be p3

and for four successes p4, making it clear that he understood that the probability
is pn for n successes in n independent repetitions of such an experiment. This will
follow from the concept of independence that we introduce in Section 4.1.

Cardano’s work was a remarkable first attempt at writing down the laws of
probability, but it was not the spark that started a systematic study of the subject.
This came from a famous series of letters between Pascal and Fermat. This corre-
spondence was initiated by Pascal to consult Fermat about problems he had been
given by Chevalier de Méré, a well-known writer, a prominent figure at the court of
Louis XIV, and an ardent gambler.

The first problem de Méré posed was a dice problem. The story goes that he had
been betting that at least one six would turn up in four rolls of a die and winning
too often, so he then bet that a pair of sixes would turn up in 24 rolls of a pair
of dice. The probability of a six with one die is 1/6 and, by the product law for
independent experiments, the probability of two sixes when a pair of dice is thrown
is (1/6)(1/6) = 1/36. Ore18 claims that a gambling rule of the time suggested that,
since four repetitions was favorable for the occurrence of an event with probability
1/6, for an event six times as unlikely, 6 · 4 = 24 repetitions would be sufficient for

16J. d’Alembert, “Croix ou Pile,” in L’Encyclopédie, ed. Diderot, vol. 4 (Paris, 1754).
17O. Ore, op. cit., p. 189.
18O. Ore, “Pascal and the Invention of Probability Theory,” American Mathematics Monthly,

vol. 67 (1960), pp. 409–419.
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a favorable bet. Pascal showed, by exact calculation, that 25 rolls are required for
a favorable bet for a pair of sixes.

The second problem was a much harder one: it was an old problem and con-
cerned the determination of a fair division of the stakes in a tournament when the
series, for some reason, is interrupted before it is completed. This problem is now
referred to as the problem of points. The problem had been a standard problem in
mathematical texts; it appeared in Fra Luca Paccioli’s book summa de Arithmetica,
Geometria, Proportioni et Proportionalità, printed in Venice in 1494,19 in the form:

A team plays ball such that a total of 60 points are required to win the
game, and each inning counts 10 points. The stakes are 10 ducats. By
some incident they cannot finish the game and one side has 50 points
and the other 20. One wants to know what share of the prize money
belongs to each side. In this case I have found that opinions differ from
one to another but all seem to me insufficient in their arguments, but I
shall state the truth and give the correct way.

Reasonable solutions, such as dividing the stakes according to the ratio of games
won by each player, had been proposed, but no correct solution had been found at
the time of the Pascal-Fermat correspondence. The letters deal mainly with the
attempts of Pascal and Fermat to solve this problem. Blaise Pascal (1623–1662)
was a child prodigy, having published his treatise on conic sections at age sixteen,
and having invented a calculating machine at age eighteen. At the time of the
letters, his demonstration of the weight of the atmosphere had already established
his position at the forefront of contemporary physicists. Pierre de Fermat (1601–
1665) was a learned jurist in Toulouse, who studied mathematics in his spare time.
He has been called by some the prince of amateurs and one of the greatest pure
mathematicians of all times.

The letters, translated by Maxine Merrington, appear in Florence David’s fasci-
nating historical account of probability, Games, Gods and Gambling .20 In a letter
dated Wednesday, 29th July, 1654, Pascal writes to Fermat:

Sir,

Like you, I am equally impatient, and although I am again ill in bed,
I cannot help telling you that yesterday evening I received from M. de
Carcavi your letter on the problem of points, which I admire more than
I can possibly say. I have not the leisure to write at length, but, in a
word, you have solved the two problems of points, one with dice and the
other with sets of games with perfect justness; I am entirely satisfied
with it for I do not doubt that I was in the wrong, seeing the admirable
agreement in which I find myself with you now. . .

Your method is very sound and is the one which first came to my mind
in this research; but because the labour of the combination is excessive,
I have found a short cut and indeed another method which is much

19ibid., p. 414.
20F. N. David, Games, Gods and Gambling (London: G. Griffin, 1962), p. 230 ff.
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Figure 1.9: Pascal’s table.

quicker and neater, which I would like to tell you here in a few words:
for henceforth I would like to open my heart to you, if I may, as I am so
overjoyed with our agreement. I see that truth is the same in Toulouse
as in Paris.

Here, more or less, is what I do to show the fair value of each game,
when two opponents play, for example, in three games and each person
has staked 32 pistoles.

Let us say that the first man had won twice and the other once; now
they play another game, in which the conditions are that, if the first
wins, he takes all the stakes; that is 64 pistoles; if the other wins it,
then they have each won two games, and therefore, if they wish to stop
playing, they must each take back their own stake, that is, 32 pistoles
each.

Then consider, Sir, if the first man wins, he gets 64 pistoles; if he loses
he gets 32. Thus if they do not wish to risk this last game but wish to
separate without playing it, the first man must say: ‘I am certain to get
32 pistoles, even if I lost I still get them; but as for the other 32, perhaps
I will get them, perhaps you will get them, the chances are equal. Let
us then divide these 32 pistoles in half and give one half to me as well
as my 32 which are mine for sure.’ He will then have 48 pistoles and the
other 16. . .

Pascal’s argument produces the table illustrated in Figure 1.9 for the amount
due player A at any quitting point.

Each entry in the table is the average of the numbers just above and to the right
of the number. This fact, together with the known values when the tournament is
completed, determines all the values in this table. If player A wins the first game,
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then he needs two games to win and B needs three games to win; and so, if the
tounament is called off, A should receive 44 pistoles.

The letter in which Fermat presented his solution has been lost; but fortunately,
Pascal describes Fermat’s method in a letter dated Monday, 24th August, 1654.
From Pascal’s letter:21

This is your procedure when there are two players: If two players, play-
ing several games, find themselves in that position when the first man
needs two games and second needs three, then to find the fair division
of stakes, you say that one must know in how many games the play will
be absolutely decided.

It is easy to calculate that this will be in four games, from which you can
conclude that it is necessary to see in how many ways four games can be
arranged between two players, and one must see how many combinations
would make the first man win and how many the second and to share
out the stakes in this proportion. I would have found it difficult to
understand this if I had not known it myself already; in fact you had
explained it with this idea in mind.

Fermat realized that the number of ways that the game might be finished may
not be equally likely. For example, if A needs two more games and B needs three to
win, two possible ways that the tournament might go for A to win are WLW and
LWLW. These two sequences do not have the same chance of occurring. To avoid
this difficulty, Fermat extended the play, adding fictitious plays, so that all the ways
that the games might go have the same length, namely four. He was shrewd enough
to realize that this extension would not change the winner and that he now could
simply count the number of sequences favorable to each player since he had made
them all equally likely. If we list all possible ways that the extended game of four
plays might go, we obtain the following 16 possible outcomes of the play:

WWWW WLWW LWWW LLWW
WWWL WLWL LWWL LLWL
WWLW WLLW LWLW LLLW
WWLL WLLL LWLL LLLL .

Player A wins in the cases where there are at least two wins (the 11 underlined
cases), and B wins in the cases where there are at least three losses (the other
5 cases). Since A wins in 11 of the 16 possible cases Fermat argued that the
probability that A wins is 11/16. If the stakes are 64 pistoles, A should receive
44 pistoles in agreement with Pascal’s result. Pascal and Fermat developed more
systematic methods for counting the number of favorable outcomes for problems
like this, and this will be one of our central problems. Such counting methods fall
under the subject of combinatorics, which is the topic of Chapter 3.

21ibid., p. 239ff.
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We see that these two mathematicians arrived at two very different ways to solve
the problem of points. Pascal’s method was to develop an algorithm and use it to
calculate the fair division. This method is easy to implement on a computer and easy
to generalize. Fermat’s method, on the other hand, was to change the problem into
an equivalent problem for which he could use counting or combinatorial methods.
We will see in Chapter 3 that, in fact, Fermat used what has become known as
Pascal’s triangle! In our study of probability today we shall find that both the
algorithmic approach and the combinatorial approach share equal billing, just as
they did 300 years ago when probability got its start.

Exercises

1 Let Ω = {a, b, c} be a sample space. Let m(a) = 1/2, m(b) = 1/3, and
m(c) = 1/6. Find the probabilities for all eight subsets of Ω.

2 Give a possible sample space Ω for each of the following experiments:

(a) An election decides between two candidates A and B.

(b) A two-sided coin is tossed.

(c) A student is asked for the month of the year and the day of the week on
which her birthday falls.

(d) A student is chosen at random from a class of ten students.

(e) You receive a grade in this course.

3 For which of the cases in Exercise 2 would it be reasonable to assign the
uniform distribution function?

4 Describe in words the events specified by the following subsets of

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

(see Example 1.6).

(a) E = {HHH,HHT,HTH,HTT}.
(b) E = {HHH,TTT}.
(c) E = {HHT,HTH,THH}.
(d) E = {HHT,HTH,HTT,THH,THT,TTH,TTT}.

5 What are the probabilities of the events described in Exercise 4?

6 A die is loaded in such a way that the probability of each face turning up
is proportional to the number of dots on that face. (For example, a six is
three times as probable as a two.) What is the probability of getting an even
number in one throw?

7 Let A and B be events such that P (A ∩B) = 1/4, P (Ã) = 1/3, and P (B) =
1/2. What is P (A ∪B)?
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8 A student must choose one of the subjects, art, geology, or psychology, as an
elective. She is equally likely to choose art or psychology and twice as likely
to choose geology. What are the respective probabilities that she chooses art,
geology, and psychology?

9 A student must choose exactly two out of three electives: art, French, and
mathematics. He chooses art with probability 5/8, French with probability
5/8, and art and French together with probability 1/4. What is the probability
that he chooses mathematics? What is the probability that he chooses either
art or French?

10 For a bill to come before the president of the United States, it must be passed
by both the House of Representatives and the Senate. Assume that, of the
bills presented to these two bodies, 60 percent pass the House, 80 percent
pass the Senate, and 90 percent pass at least one of the two. Calculate the
probability that the next bill presented to the two groups will come before the
president.

11 What odds should a person give in favor of the following events?

(a) A card chosen at random from a 52-card deck is an ace.

(b) Two heads will turn up when a coin is tossed twice.

(c) Boxcars (two sixes) will turn up when two dice are rolled.

12 You offer 3 : 1 odds that your friend Smith will be elected mayor of your city.
What probability are you assigning to the event that Smith wins?

13 In a horse race, the odds that Romance will win are listed as 2 : 3 and that
Downhill will win are 1 : 2. What odds should be given for the event that
either Romance or Downhill wins?

14 Let X be a random variable with distribution function mX(x) defined by

mX(−1) = 1/5, mX(0) = 1/5, mX(1) = 2/5, mX(2) = 1/5 .

(a) Let Y be the random variable defined by the equation Y = X + 3. Find
the distribution function mY (y) of Y .

(b) Let Z be the random variable defined by the equation Z = X2. Find the
distribution function mZ(z) of Z.

*15 John and Mary are taking a mathematics course. The course has only three
grades: A, B, and C. The probability that John gets a B is .3. The probability
that Mary gets a B is .4. The probability that neither gets an A but at least
one gets a B is .1. What is the probability that at least one gets a B but
neither gets a C?

16 In a fierce battle, not less than 70 percent of the soldiers lost one eye, not less
than 75 percent lost one ear, not less than 80 percent lost one hand, and not
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less than 85 percent lost one leg. What is the minimal possible percentage of
those who simultaneously lost one ear, one eye, one hand, and one leg?22

*17 Assume that the probability of a “success” on a single experiment with n

outcomes is 1/n. Let m be the number of experiments necessary to make it a
favorable bet that at least one success will occur (see Exercise 1.1.5).

(a) Show that the probability that, in m trials, there are no successes is
(1− 1/n)m.

(b) (de Moivre) Show that if m = n log 2 then

lim
n→∞

(
1− 1

n

)m

=
1
2

.

Hint :

lim
n→∞

(
1− 1

n

)n

= e−1 .

Hence for large n we should choose m to be about n log 2.

(c) Would DeMoivre have been led to the correct answer for de Méré’s two
bets if he had used his approximation?

18 (a) For events A1, . . . , An, prove that

P (A1 ∪ · · · ∪An) ≤ P (A1) + · · ·+ P (An) .

(b) For events A and B, prove that

P (A ∩B) ≥ P (A) + P (B)− 1.

19 If A, B, and C are any three events, show that

P (A ∪B ∪ C) = P (A) + P (B) + P (C)
−P (A ∩B)− P (B ∩ C)− P (C ∩A)
+P (A ∩B ∩ C) .

20 Explain why it is not possible to define a uniform distribution function (see
Definition 1.3) on a countably infinite sample space. Hint : Assume m(ω) = a

for all ω, where 0 ≤ a ≤ 1. Does m(ω) have all the properties of a distribution
function?

21 In Example 1.13 find the probability that the coin turns up heads for the first
time on the tenth, eleventh, or twelfth toss.

22 A die is rolled until the first time that a six turns up. We shall see that the
probability that this occurs on the nth roll is (5/6)n−1 · (1/6). Using this fact,
describe the appropriate infinite sample space and distribution function for
the experiment of rolling a die until a six turns up for the first time. Verify
that for your distribution function

∑
ω m(ω) = 1.

22See Knot X, in Lewis Carroll, Mathematical Recreations, vol. 2 (Dover, 1958).
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23 Let Ω be the sample space

Ω = {0, 1, 2, . . .} ,

and define a distribution function by

m(j) = (1− r)jr ,

for some fixed r, 0 < r < 1, and for j = 0, 1, 2, . . .. Show that this is a
distribution function for Ω.

24 Our calendar has a 400-year cycle. B. H. Brown noticed that the number of
times the thirteenth of the month falls on each of the days of the week in the
4800 months of a cycle is as follows:

Sunday 687

Monday 685

Tuesday 685

Wednesday 687

Thursday 684

Friday 688

Saturday 684

From this he deduced that the thirteenth was more likely to fall on Friday
than on any other day. Explain what he meant by this.

25 Tversky and Kahneman23 asked a group of subjects to carry out the following
task. They are told that:

Linda is 31, single, outspoken, and very bright. She majored in
philosophy in college. As a student, she was deeply concerned with
racial discrimination and other social issues, and participated in
anti-nuclear demonstrations.

The subjects are then asked to rank the likelihood of various alternatives, such
as:
(1) Linda is active in the feminist movement.
(2) Linda is a bank teller.
(3) Linda is a bank teller and active in the feminist movement.

Tversky and Kahneman found that between 85 and 90 percent of the subjects
rated alternative (1) most likely, but alternative (3) more likely than alterna-
tive (2). Is it? They call this phenomenon the conjunction fallacy, and note
that it appears to be unaffected by prior training in probability or statistics.
Is this phenomenon a fallacy? If so, why?

23K. McKean, “Decisions, Decisions,” pp. 22–31.
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26 Two cards are drawn successively from a deck of 52 cards. Find the probability
that the second card is higher in rank than the first card. Hint : Show that 1 =
P (higher) + P (lower) + P (same) and use the fact that P (higher) = P (lower).

27 A life table is a table that lists for a given number of births the estimated
number of people who will live to a given age. In Appendix C we give a life
table based upon 100,000 births for ages from 0 to 85, both for women and for
men. Show how from this table you can estimate the probability m(x) that a
person born in 1981 would live to age x. Write a program to plot m(x) both
for men and for women, and comment on the differences that you see in the
two cases.

*28 Here is an attempt to get around the fact that we cannot choose a “random
integer.”

(a) What, intuitively, is the probability that a “randomly chosen” positive
integer is a multiple of 3?

(b) Let P3(N) be the probability that an integer, chosen at random between
1 and N , is a multiple of 3 (since the sample space is finite, this is a
legitimate probability). Show that the limit

P3 = lim
N→∞

P3(N)

exists and equals 1/3. This formalizes the intuition in (a), and gives us
a way to assign “probabilities” to certain events that are infinite subsets
of the positive integers.

(c) If A is any set of positive integers, let A(N) mean the number of elements
of A which are less than or equal to N . Then define the “probability” of
A as

P (A) = lim
N→∞

A(N)/N ,

provided this limit exists. Show that this definition would assign prob-
ability 0 to any finite set and probability 1 to the set of all positive
integers. Thus, the probability of the set of all integers is not the sum of
the probabilities of the individual integers in this set. This means that
the definition of probability given here is not a completely satisfactory
definition.

(d) Let A be the set of all positive integers with an odd number of dig-
its. Show that P (A) does not exist. This shows that under the above
definition of probability, not all sets have probabilities.

29 (from Sholander24) In a standard clover-leaf interchange, there are four ramps
for making right-hand turns, and inside these four ramps, there are four more
ramps for making left-hand turns. Your car approaches the interchange from
the south. A mechanism has been installed so that at each point where there
exists a choice of directions, the car turns to the right with fixed probability r.

24M. Sholander, Problem #1034, Mathematics Magazine, vol. 52, no. 3 (May 1979), p. 183.
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(a) If r = 1/2, what is your chance of emerging from the interchange going
west?

(b) Find the value of r that maximizes your chance of a westward departure
from the interchange.

30 (from Benkoski25) Consider a “pure” cloverleaf interchange in which there
are no ramps for right-hand turns, but only the two intersecting straight
highways with cloverleaves for left-hand turns. (Thus, to turn right in such
an interchange, one must make three left-hand turns.) As in the preceding
problem, your car approaches the interchange from the south. What is the
value of r that maximizes your chances of an eastward departure from the
interchange?

31 (from vos Savant26) A reader of Marilyn vos Savant’s column wrote in with
the following question:

My dad heard this story on the radio. At Duke University, two
students had received A’s in chemistry all semester. But on the
night before the final exam, they were partying in another state
and didn’t get back to Duke until it was over. Their excuse to the
professor was that they had a flat tire, and they asked if they could
take a make-up test. The professor agreed, wrote out a test and sent
the two to separate rooms to take it. The first question (on one side
of the paper) was worth 5 points, and they answered it easily. Then
they flipped the paper over and found the second question, worth
95 points: ‘Which tire was it?’ What was the probability that both
students would say the same thing? My dad and I think it’s 1 in
16. Is that right?”

(a) Is the answer 1/16?

(b) The following question was asked of a class of students. “I was driving
to school today, and one of my tires went flat. Which tire do you think
it was?” The responses were as follows: right front, 58%, left front, 11%,
right rear, 18%, left rear, 13%. Suppose that this distribution holds in
the general population, and assume that the two test-takers are randomly
chosen from the general population. What is the probability that they
will give the same answer to the second question?

25S. Benkoski, Comment on Problem #1034, Mathematics Magazine, vol. 52, no. 3 (May 1979),
pp. 183-184.

26M. vos Savant, Parade Magazine, 3 March 1996, p. 14.



Chapter 2

Continuous Probability
Densities

2.1 Simulation of Continuous Probabilities

In this section we shall show how we can use computer simulations for experiments
that have a whole continuum of possible outcomes.

Probabilities

Example 2.1 We begin by constructing a spinner, which consists of a circle of unit
circumference and a pointer as shown in Figure 2.1. We pick a point on the circle
and label it 0, and then label every other point on the circle with the distance, say
x, from 0 to that point, measured counterclockwise. The experiment consists of
spinning the pointer and recording the label of the point at the tip of the pointer.
We let the random variable X denote the value of this outcome. The sample space
is clearly the interval [0, 1). We would like to construct a probability model in which
each outcome is equally likely to occur.

If we proceed as we did in Chapter 1 for experiments with a finite number of
possible outcomes, then we must assign the probability 0 to each outcome, since
otherwise, the sum of the probabilities, over all of the possible outcomes, would
not equal 1. (In fact, summing an uncountable number of real numbers is a tricky
business; in particular, in order for such a sum to have any meaning, at most
countably many of the summands can be different than 0.) However, if all of the
assigned probabilities are 0, then the sum is 0, not 1, as it should be.

In the next section, we will show how to construct a probability model in this
situation. At present, we will assume that such a model can be constructed. We
will also assume that in this model, if E is an arc of the circle, and E is of length
p, then the model will assign the probability p to E. This means that if the pointer
is spun, the probability that it ends up pointing to a point in E equals p, which is
certainly a reasonable thing to expect.

41
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0

x

Figure 2.1: A spinner.

To simulate this experiment on a computer is an easy matter. Many computer
software packages have a function which returns a random real number in the in-
terval [0, 1]. Actually, the returned value is always a rational number, and the
values are determined by an algorithm, so a sequence of such values is not truly
random. Nevertheless, the sequences produced by such algorithms behave much
like theoretically random sequences, so we can use such sequences in the simulation
of experiments. On occasion, we will need to refer to such a function. We will call
this function rnd. 2

Monte Carlo Procedure and Areas

It is sometimes desirable to estimate quantities whose exact values are difficult or
impossible to calculate exactly. In some of these cases, a procedure involving chance,
called a Monte Carlo procedure, can be used to provide such an estimate.

Example 2.2 In this example we show how simulation can be used to estimate
areas of plane figures. Suppose that we program our computer to provide a pair
(x, y) or numbers, each chosen independently at random from the interval [0, 1].
Then we can interpret this pair (x, y) as the coordinates of a point chosen at random
from the unit square. Events are subsets of the unit square. Our experience with
Example 2.1 suggests that the point is equally likely to fall in subsets of equal area.
Since the total area of the square is 1, the probability of the point falling in a specific
subset E of the unit square should be equal to its area. Thus, we can estimate the
area of any subset of the unit square by estimating the probability that a point
chosen at random from this square falls in the subset.

We can use this method to estimate the area of the region E under the curve
y = x2 in the unit square (see Figure 2.2). We choose a large number of points (x, y)
at random and record what fraction of them fall in the region E = { (x, y) : y ≤ x2 }.

The program MonteCarlo will carry out this experiment for us. Running this
program for 10,000 experiments gives an estimate of .325 (see Figure 2.3).

From these experiments we would estimate the area to be about 1/3. Of course,
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1
x

1

y

y = x2

E

Figure 2.2: Area under y = x2.

for this simple region we can find the exact area by calculus. In fact,

Area of E =
∫ 1

0

x2 dx =
1
3

.

We have remarked in Chapter 1 that, when we simulate an experiment of this type
n times to estimate a probability, we can expect the answer to be in error by at
most 1/

√
n at least 95 percent of the time. For 10,000 experiments we can expect

an accuracy of 0.01, and our simulation did achieve this accuracy.
This same argument works for any region E of the unit square. For example,

suppose E is the circle with center (1/2, 1/2) and radius 1/2. Then the probability
that our random point (x, y) lies inside the circle is equal to the area of the circle,
that is,

P (E) = π
(1

2

)2

=
π

4
.

If we did not know the value of π, we could estimate the value by performing this
experiment a large number of times! 2

The above example is not the only way of estimating the value of π by a chance
experiment. Here is another way, discovered by Buffon.1

1G. L. Buffon, in “Essai d’Arithmétique Morale,” Oeuvres Complètes de Buffon avec Supple-
ments, tome iv, ed. Duménil (Paris, 1836).
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1

1
1000 trials

Estimate of area is .325

y = x2

E

Figure 2.3: Computing the area by simulation.

Buffon’s Needle

Example 2.3 Suppose that we take a card table and draw across the top surface
a set of parallel lines a unit distance apart. We then drop a common needle of
unit length at random on this surface and observe whether or not the needle lies
across one of the lines. We can describe the possible outcomes of this experiment
by coordinates as follows: Let d be the distance from the center of the needle to the
nearest line. Next, let L be the line determined by the needle, and define θ as the
acute angle that the line L makes with the set of parallel lines. (The reader should
certainly be wary of this description of the sample space. We are attempting to
coordinatize a set of line segments. To see why one must be careful in the choice
of coordinates, see Example 2.6.) Using this description, we have 0 ≤ d ≤ 1/2, and
0 ≤ θ ≤ π/2. Moreover, we see that the needle lies across the nearest line if and
only if the hypotenuse of the triangle (see Figure 2.4) is less than half the length of
the needle, that is,

d

sin θ
<

1
2

.

Now we assume that when the needle drops, the pair (θ, d) is chosen at random
from the rectangle 0 ≤ θ ≤ π/2, 0 ≤ d ≤ 1/2. We observe whether the needle lies
across the nearest line (i.e., whether d ≤ (1/2) sin θ). The probability of this event
E is the fraction of the area of the rectangle which lies inside E (see Figure 2.5).



2.1. SIMULATION OF CONTINUOUS PROBABILITIES 45

d
1/2

θ

Figure 2.4: Buffon’s experiment.

θ0

1/2

0

d

π/2

E

Figure 2.5: Set E of pairs (θ, d) with d < 1
2 sin θ.

Now the area of the rectangle is π/4, while the area of E is

Area =
∫ π/2

0

1
2

sin θ dθ =
1
2

.

Hence, we get

P (E) =
1/2
π/4

=
2
π

.

The program BuffonsNeedle simulates this experiment. In Figure 2.6, we show
the position of every 100th needle in a run of the program in which 10,000 needles
were “dropped.” Our final estimate for π is 3.139. While this was within 0.003 of
the true value for π we had no right to expect such accuracy. The reason for this
is that our simulation estimates P (E). While we can expect this estimate to be in
error by at most 0.01, a small error in P (E) gets magnified when we use this to
compute π = 2/P (E). Perlman and Wichura, in their article “Sharpening Buffon’s



46 CHAPTER 2. CONTINUOUS PROBABILITY DENSITIES

0.00

5.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00
10000

3.139

Figure 2.6: Simulation of Buffon’s needle experiment.

Needle,”2 show that we can expect to have an error of not more than 5/
√

n about
95 percent of the time. Here n is the number of needles dropped. Thus for 10,000
needles we should expect an error of no more than 0.05, and that was the case here.
We see that a large number of experiments is necessary to get a decent estimate for
π. 2

In each of our examples so far, events of the same size are equally likely. Here
is an example where they are not. We will see many other such examples later.

Example 2.4 Suppose that we choose two random real numbers in [0, 1] and add
them together. Let X be the sum. How is X distributed?

To help understand the answer to this question, we can use the program Are-
abargraph. This program produces a bar graph with the property that on each
interval, the area, rather than the height, of the bar is equal to the fraction of out-
comes that fell in the corresponding interval. We have carried out this experiment
1000 times; the data is shown in Figure 2.7. It appears that the function defined
by

f(x) =
{

x, if 0 ≤ x ≤ 1,
2− x, if 1 < x ≤ 2

fits the data very well. (It is shown in the figure.) In the next section, we will
see that this function is the “right” function. By this we mean that if a and b are
any two real numbers between 0 and 2, with a ≤ b, then we can use this function
to calculate the probability that a ≤ X ≤ b. To understand how this calculation
might be performed, we again consider Figure 2.7. Because of the way the bars
were constructed, the sum of the areas of the bars corresponding to the interval

2M. D. Perlman and M. J. Wichura, “Sharpening Buffon’s Needle,” The American Statistician,
vol. 29, no. 4 (1975), pp. 157–163.
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Figure 2.7: Sum of two random numbers.

[a, b] approximates the probability that a ≤ X ≤ b. But the sum of the areas of
these bars also approximates the integral∫ b

a

f(x) dx .

This suggests that for an experiment with a continuum of possible outcomes, if we
find a function with the above property, then we will be able to use it to calculate
probabilities. In the next section, we will show how to determine the function
f(x). 2

Example 2.5 Suppose that we choose 100 random numbers in [0, 1], and let X

represent their sum. How is X distributed? We have carried out this experiment
10000 times; the results are shown in Figure 2.8. It is not so clear what function
fits the bars in this case. It turns out that the type of function which does the job
is called a normal density function. This type of function is sometimes referred to
as a “bell-shaped” curve. It is among the most important functions in the subject
of probability, and will be formally defined in Section 5.2 of Chapter 4.3. 2

Our last example explores the fundamental question of how probabilities are
assigned.

Bertrand’s Paradox

Example 2.6 A chord of a circle is a line segment both of whose endpoints lie on
the circle. Suppose that a chord is drawn at random in a unit circle. What is the
probability that its length exceeds

√
3?

Our answer will depend on what we mean by random, which will depend, in turn,
on what we choose for coordinates. The sample space Ω is the set of all possible
chords in the circle. To find coordinates for these chords, we first introduce a
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Figure 2.9: Random chord.

rectangular coordinate system with origin at the center of the circle (see Figure 2.9).
We note that a chord of a circle is perpendicular to the radial line containing the
midpoint of the chord. We can describe each chord by giving:

1. The rectangular coordinates (x, y) of the midpoint M , or

2. The polar coordinates (r, θ) of the midpoint M , or

3. The polar coordinates (1, α) and (1, β) of the endpoints A and B.

In each case we shall interpret at random to mean: choose these coordinates at
random.

We can easily estimate this probability by computer simulation. In programming
this simulation, it is convenient to include certain simplifications, which we describe
in turn:
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1. To simulate this case, we choose values for x and y from [−1, 1] at random.
Then we check whether x2 + y2 ≤ 1. If not, the point M = (x, y) lies outside
the circle and cannot be the midpoint of any chord, and we ignore it. Oth-
erwise, M lies inside the circle and is the midpoint of a unique chord, whose
length L is given by the formula:

L = 2
√

1− (x2 + y2) .

2. To simulate this case, we take account of the fact that any rotation of the
circle does not change the length of the chord, so we might as well assume in
advance that the chord is horizontal. Then we choose r from [0, 1] at random,
and compute the length of the resulting chord with midpoint (r, π/2) by the
formula:

L = 2
√

1− r2 .

3. To simulate this case, we assume that one endpoint, say B, lies at (1, 0) (i.e.,
that β = 0). Then we choose a value for α from [0, 2π] at random and compute
the length of the resulting chord, using the Law of Cosines, by the formula:

L =
√

2− 2 cos α .

The program BertrandsParadox carries out this simulation. Running this
program produces the results shown in Figure 2.10. In the first circle in this figure,
a smaller circle has been drawn. Those chords which intersect this smaller circle
have length at least

√
3. In the second circle in the figure, the vertical line intersects

all chords of length at least
√

3. In the third circle, again the vertical line intersects
all chords of length at least

√
3.

In each case we run the experiment a large number of times and record the
fraction of these lengths that exceed

√
3. We have printed the results of every

100th trial up to 10,000 trials.
It is interesting to observe that these fractions are not the same in the three cases;

they depend on our choice of coordinates. This phenomenon was first observed by
Bertrand, and is now known as Bertrand’s paradox.3 It is actually not a paradox at
all; it is merely a reflection of the fact that different choices of coordinates will lead
to different assignments of probabilities. Which assignment is “correct” depends on
what application or interpretation of the model one has in mind.

One can imagine a real experiment involving throwing long straws at a circle
drawn on a card table. A “correct” assignment of coordinates should not depend
on where the circle lies on the card table, or where the card table sits in the room.
Jaynes4 has shown that the only assignment which meets this requirement is (2).
In this sense, the assignment (2) is the natural, or “correct” one (see Exercise 11).

We can easily see in each case what the true probabilities are if we note that√
3 is the length of the side of an inscribed equilateral triangle. Hence, a chord has
3J. Bertrand, Calcul des Probabilités (Paris: Gauthier-Villars, 1889).
4E. T. Jaynes, “The Well-Posed Problem,” in Papers on Probability, Statistics and Statistical

Physics, R. D. Rosencrantz, ed. (Dordrecht: D. Reidel, 1983), pp. 133–148.
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Figure 2.10: Bertrand’s paradox.

length L >
√

3 if its midpoint has distance d < 1/2 from the origin (see Figure 2.9).
The following calculations determine the probability that L >

√
3 in each of the

three cases.

1. L >
√

3 if(x, y) lies inside a circle of radius 1/2, which occurs with probability

p =
π(1/2)2

π(1)2
=

1
4

.

2. L >
√

3 if |r| < 1/2, which occurs with probability

1/2− (−1/2)
1− (−1)

=
1
2

.

3. L >
√

3 if 2π/3 < α < 4π/3, which occurs with probability

4π/3− 2π/3
2π − 0

=
1
3

.

We see that our simulations agree quite well with these theoretical values. 2

Historical Remarks

G. L. Buffon (1707–1788) was a natural scientist in the eighteenth century who
applied probability to a number of his investigations. His work is found in his
monumental 44-volume Histoire Naturelle and its supplements.5 For example, he

5G. L. Buffon, Histoire Naturelle, Generali et Particular avec le Descriptión du Cabinet du
Roy, 44 vols. (Paris: L‘Imprimerie Royale, 1749–1803).
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Length of Number of Number of Estimate
Experimenter needle casts crossings for π
Wolf, 1850 .8 5000 2532 3.1596
Smith, 1855 .6 3204 1218.5 3.1553
De Morgan, c.1860 1.0 600 382.5 3.137
Fox, 1864 .75 1030 489 3.1595
Lazzerini, 1901 .83 3408 1808 3.1415929
Reina, 1925 .5419 2520 869 3.1795

Table 2.1: Buffon needle experiments to estimate π.

presented a number of mortality tables and used them to compute, for each age
group, the expected remaining lifetime. From his table he observed: the expected
remaining lifetime of an infant of one year is 33 years, while that of a man of 21
years is also approximately 33 years. Thus, a father who is not yet 21 can hope to
live longer than his one year old son, but if the father is 40, the odds are already 3
to 2 that his son will outlive him.6

Buffon wanted to show that not all probability calculations rely only on algebra,
but that some rely on geometrical calculations. One such problem was his famous
“needle problem” as discussed in this chapter.7 In his original formulation, Buffon
describes a game in which two gamblers drop a loaf of French bread on a wide-board
floor and bet on whether or not the loaf falls across a crack in the floor. Buffon
asked: what length L should the bread loaf be, relative to the width W of the
floorboards, so that the game is fair. He found the correct answer (L = (π/4)W )
using essentially the methods described in this chapter. He also considered the case
of a checkerboard floor, but gave the wrong answer in this case. The correct answer
was given later by Laplace.

The literature contains descriptions of a number of experiments that were actu-
ally carried out to estimate π by this method of dropping needles. N. T. Gridgeman8

discusses the experiments shown in Table 2.1. (The halves for the number of cross-
ing comes from a compromise when it could not be decided if a crossing had actually
occurred.) He observes, as we have, that 10,000 casts could do no more than estab-
lish the first decimal place of π with reasonable confidence. Gridgeman points out
that, although none of the experiments used even 10,000 casts, they are surprisingly
good, and in some cases, too good. The fact that the number of casts is not always
a round number would suggest that the authors might have resorted to clever stop-
ping to get a good answer. Gridgeman comments that Lazzerini’s estimate turned
out to agree with a well-known approximation to π, 355/113 = 3.1415929, discov-
ered by the fifth-century Chinese mathematician, Tsu Ch’ungchih. Gridgeman says
that he did not have Lazzerini’s original report, and while waiting for it (knowing

6G. L. Buffon, “Essai d’Arithmétique Morale,” p. 301.
7ibid., pp. 277–278.
8N. T. Gridgeman, “Geometric Probability and the Number π” Scripta Mathematika, vol. 25,

no. 3, (1960), pp. 183–195.
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only the needle crossed a line 1808 times in 3408 casts) deduced that the length of
the needle must have been 5/6. He calculated this from Buffon’s formula, assuming
π = 355/113:

L =
πP (E)

2
=

1
2

(
355
113

)(
1808
3408

)
=

5
6

= .8333 .

Even with careful planning one would have to be extremely lucky to be able to stop
so cleverly.

The second author likes to trace his interest in probability theory to the Chicago
World’s Fair of 1933 where he observed a mechanical device dropping needles and
displaying the ever-changing estimates for the value of π. (The first author likes to
trace his interest in probability theory to the second author.)

Exercises

*1 In the spinner problem (see Example 2.1) divide the unit circumference into
three arcs of length 1/2, 1/3, and 1/6. Write a program to simulate the
spinner experiment 1000 times and print out what fraction of the outcomes
fall in each of the three arcs. Now plot a bar graph whose bars have width 1/2,
1/3, and 1/6, and areas equal to the corresponding fractions as determined
by your simulation. Show that the heights of the bars are all nearly the same.

2 Do the same as in Exercise 1, but divide the unit circumference into five arcs
of length 1/3, 1/4, 1/5, 1/6, and 1/20.

3 Alter the program MonteCarlo to estimate the area of the circle of radius
1/2 with center at (1/2, 1/2) inside the unit square by choosing 1000 points
at random. Compare your results with the true value of π/4. Use your results
to estimate the value of π. How accurate is your estimate?

4 Alter the program MonteCarlo to estimate the area under the graph of
y = sinπx inside the unit square by choosing 10,000 points at random. Now
calculate the true value of this area and use your results to estimate the value
of π. How accurate is your estimate?

5 Alter the program MonteCarlo to estimate the area under the graph of
y = 1/(x + 1) in the unit square in the same way as in Exercise 4. Calculate
the true value of this area and use your simulation results to estimate the
value of log 2. How accurate is your estimate?

6 To simulate the Buffon’s needle problem we choose independently the dis-
tance d and the angle θ at random, with 0 ≤ d ≤ 1/2 and 0 ≤ θ ≤ π/2,
and check whether d ≤ (1/2) sin θ. Doing this a large number of times, we
estimate π as 2/a, where a is the fraction of the times that d ≤ (1/2) sin θ.
Write a program to estimate π by this method. Run your program several
times for each of 100, 1000, and 10,000 experiments. Does the accuracy of
the experimental approximation for π improve as the number of experiments
increases?
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7 For Buffon’s needle problem, Laplace9 considered a grid with horizontal and
vertical lines one unit apart. He showed that the probability that a needle of
length L ≤ 1 crosses at least one line is

p =
4L− L2

π
.

To simulate this experiment we choose at random an angle θ between 0 and
π/2 and independently two numbers d1 and d2 between 0 and L/2. (The two
numbers represent the distance from the center of the needle to the nearest
horizontal and vertical line.) The needle crosses a line if either d1 ≤ (L/2) sin θ

or d2 ≤ (L/2) cos θ. We do this a large number of times and estimate π as

π̄ =
4L− L2

a
,

where a is the proportion of times that the needle crosses at least one line.
Write a program to estimate π by this method, run your program for 100,
1000, and 10,000 experiments, and compare your results with Buffon’s method
described in Exercise 6. (Take L = 1.)

8 A long needle of length L much bigger than 1 is dropped on a grid with
horizontal and vertical lines one unit apart. We will see (in Exercise 6.3.28)
that the average number a of lines crossed is approximately

a =
4L

π
.

To estimate π by simulation, pick an angle θ at random between 0 and π/2 and
compute L sin θ + L cos θ. This may be used for the number of lines crossed.
Repeat this many times and estimate π by

π̄ =
4L

a
,

where a is the average number of lines crossed per experiment. Write a pro-
gram to simulate this experiment and run your program for the number of
experiments equal to 100, 1000, and 10,000. Compare your results with the
methods of Laplace or Buffon for the same number of experiments. (Use
L = 100.)

The following exercises involve experiments in which not all outcomes are
equally likely. We shall consider such experiments in detail in the next section,
but we invite you to explore a few simple cases here.

9 A large number of waiting time problems have an exponential distribution of
outcomes. We shall see (in Section 5.2) that such outcomes are simulated by
computing (−1/λ) log(rnd), where λ > 0. For waiting times produced in this
way, the average waiting time is 1/λ. For example, the times spent waiting for

9P. S. Laplace, Théorie Analytique des Probabilités (Paris: Courcier, 1812).
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a car to pass on a highway, or the times between emissions of particles from a
radioactive source, are simulated by a sequence of random numbers, each of
which is chosen by computing (−1/λ) log(rnd), where 1/λ is the average time
between cars or emissions. Write a program to simulate the times between
cars when the average time between cars is 30 seconds. Have your program
compute an area bar graph for these times by breaking the time interval from
0 to 120 into 24 subintervals. On the same pair of axes, plot the function
f(x) = (1/30)e−(1/30)x. Does the function fit the bar graph well?

10 In Exercise 9, the distribution came “out of a hat.” In this problem, we will
again consider an experiment whose outcomes are not equally likely. We will
determine a function f(x) which can be used to determine the probability of
certain events. Let T be the right triangle in the plane with vertices at the
points (0, 0), (1, 0), and (0, 1). The experiment consists of picking a point
at random in the interior of T , and recording only the x-coordinate of the
point. Thus, the sample space is the set [0, 1], but the outcomes do not seem
to be equally likely. We can simulate this experiment by asking a computer to
return two random real numbers in [0, 1], and recording the first of these two
numbers if their sum is less than 1. Write this program and run it for 10,000
trials. Then make a bar graph of the result, breaking the interval [0, 1] into
10 intervals. Compare the bar graph with the function f(x) = 2 − 2x. Now
show that there is a constant c such that the height of T at the x-coordinate
value x is c times f(x) for every x in [0, 1]. Finally, show that∫ 1

0

f(x) dx = 1 .

How might one use the function f(x) to determine the probability that the
outcome is between .2 and .5?

11 Here is another way to pick a chord at random on the circle of unit radius.
Imagine that we have a card table whose sides are of length 100. We place
coordinate axes on the table in such a way that each side of the table is parallel
to one of the axes, and so that the center of the table is the origin. We now
place a circle of unit radius on the table so that the center of the circle is the
origin. Now pick out a point (x0, y0) at random in the square, and an angle θ

at random in the interval (−π/2, π/2). Let m = tan θ. Then the equation of
the line passing through (x0, y0) with slope m is

y = y0 + m(x− x0) ,

and the distance of this line from the center of the circle (i.e., the origin) is

d =
∣∣∣∣y0 −mx0√

m2 + 1

∣∣∣∣ .

We can use this distance formula to check whether the line intersects the circle
(i.e., whether d < 1). If so, we consider the resulting chord a random chord.
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This describes an experiment of dropping a long straw at random on a table
on which a circle is drawn.

Write a program to simulate this experiment 10000 times and estimate the
probability that the length of the chord is greater than

√
3. How does your

estimate compare with the results of Example 2.6?

2.2 Continuous Density Functions

In the previous section we have seen how to simulate experiments with a whole
continuum of possible outcomes and have gained some experience in thinking about
such experiments. Now we turn to the general problem of assigning probabilities to
the outcomes and events in such experiments. We shall restrict our attention here
to those experiments whose sample space can be taken as a suitably chosen subset
of the line, the plane, or some other Euclidean space. We begin with some simple
examples.

Spinners

Example 2.7 The spinner experiment described in Example 2.1 has the interval
[0, 1) as the set of possible outcomes. We would like to construct a probability
model in which each outcome is equally likely to occur. We saw that in such a
model, it is necessary to assign the probability 0 to each outcome. This does not at
all mean that the probability of every event must be zero. On the contrary, if we
let the random variable X denote the outcome, then the probability

P ( 0 ≤ X ≤ 1)

that the head of the spinner comes to rest somewhere in the circle, should be equal
to 1. Also, the probability that it comes to rest in the upper half of the circle should
be the same as for the lower half, so that

P

(
0 ≤ X <

1
2

)
= P

(
1
2
≤ X < 1

)
=

1
2

.

More generally, in our model, we would like the equation

P (c ≤ X < d) = d− c

to be true for every choice of c and d.
If we let E = [c, d], then we can write the above formula in the form

P (E) =
∫

E

f(x) dx ,

where f(x) is the constant function with value 1. This should remind the reader of
the corresponding formula in the discrete case for the probability of an event:

P (E) =
∑
ω∈E

m(ω) .
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Figure 2.11: Spinner experiment.

The difference is that in the continuous case, the quantity being integrated, f(x),
is not the probability of the outcome x. (However, if one uses infinitesimals, one
can consider f(x) dx as the probability of the outcome x.)

In the continuous case, we will use the following convention. If the set of out-
comes is a set of real numbers, then the individual outcomes will be referred to
by small Roman letters such as x. If the set of outcomes is a subset of R2, then
the individual outcomes will be denoted by (x, y). In either case, it may be more
convenient to refer to an individual outcome by using ω, as in Chapter 1.

Figure 2.11 shows the results of 1000 spins of the spinner. The function f(x)
is also shown in the figure. The reader will note that the area under f(x) and
above a given interval is approximately equal to the fraction of outcomes that fell
in that interval. The function f(x) is called the density function of the random
variable X. The fact that the area under f(x) and above an interval corresponds
to a probability is the defining property of density functions. A precise definition
of density functions will be given shortly. 2

Darts

Example 2.8 A game of darts involves throwing a dart at a circular target of unit
radius. Suppose we throw a dart once so that it hits the target, and we observe
where it lands.

To describe the possible outcomes of this experiment, it is natural to take as our
sample space the set Ω of all the points in the target. It is convenient to describe
these points by their rectangular coordinates, relative to a coordinate system with
origin at the center of the target, so that each pair (x, y) of coordinates with x2+y2 ≤
1 describes a possible outcome of the experiment. Then Ω = { (x, y) : x2 + y2 ≤ 1 }
is a subset of the Euclidean plane, and the event E = { (x, y) : y > 0 }, for example,
corresponds to the statement that the dart lands in the upper half of the target,
and so forth. Unless there is reason to believe otherwise (and with experts at the
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game there may well be!), it is natural to assume that the coordinates are chosen
at random. (When doing this with a computer, each coordinate is chosen uniformly
from the interval [−1, 1]. If the resulting point does not lie inside the unit circle,
the point is not counted.) Then the arguments used in the preceding example show
that the probability of any elementary event, consisting of a single outcome, must
be zero, and suggest that the probability of the event that the dart lands in any
subset E of the target should be determined by what fraction of the target area lies
in E. Thus,

P (E) =
area of E

area of target
=

area of E

π
.

This can be written in the form

P (E) =
∫

E

f(x) dx ,

where f(x) is the constant function with value 1/π. In particular, if E = { (x, y) :
x2 + y2 ≤ a2 } is the event that the dart lands within distance a < 1 of the center
of the target, then

P (E) =
πa2

π
= a2 .

For example, the probability that the dart lies within a distance 1/2 of the center
is 1/4. 2

Example 2.9 In the dart game considered above, suppose that, instead of observ-
ing where the dart lands, we observe how far it lands from the center of the target.

In this case, we take as our sample space the set Ω of all circles with centers at
the center of the target. It is convenient to describe these circles by their radii, so
that each circle is identified by its radius r, 0 ≤ r ≤ 1. In this way, we may regard
Ω as the subset [0, 1] of the real line.

What probabilities should we assign to the events E of Ω? If

E = { r : 0 ≤ r ≤ a } ,

then E occurs if the dart lands within a distance a of the center, that is, within the
circle of radius a, and we saw in the previous example that under our assumptions
the probability of this event is given by

P ([0, a]) = a2 .

More generally, if
E = { r : a ≤ r ≤ b } ,

then by our basic assumptions,

P (E) = P ([a, b]) = P ([0, b])− P ([0, a])

= b2 − a2

= (b− a)(b + a)

= 2(b− a)
(b + a)

2
.



58 CHAPTER 2. CONTINUOUS PROBABILITY DENSITIES

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

0         0.2       0.4        0.6        0.8         1 

2

1.5

1

0.5

0

Figure 2.12: Distribution of dart distances in 400 throws.

Thus, P (E) =2(length of E)(midpoint of E). Here we see that the probability
assigned to the interval E depends not only on its length but also on its midpoint
(i.e., not only on how long it is, but also on where it is). Roughly speaking, in this
experiment, events of the form E = [a, b] are more likely if they are near the rim
of the target and less likely if they are near the center. (A common experience for
beginners! The conclusion might well be different if the beginner is replaced by an
expert.)

Again we can simulate this by computer. We divide the target area into ten
concentric regions of equal thickness.

The computer program Darts throws n darts and records what fraction of the
total falls in each of these concentric regions. The program Areabargraph then
plots a bar graph with the area of the ith bar equal to the fraction of the total
falling in the ith region. Running the program for 1000 darts resulted in the bar
graph of Figure 2.12.

Note that here the heights of the bars are not all equal, but grow approximately
linearly with r. In fact, the linear function y = 2r appears to fit our bar graph quite
well. This suggests that the probability that the dart falls within a distance a of the
center should be given by the area under the graph of the function y = 2r between
0 and a. This area is a2, which agrees with the probability we have assigned above
to this event. 2

Sample Space Coordinates

These examples suggest that for continuous experiments of this sort we should assign
probabilities for the outcomes to fall in a given interval by means of the area under
a suitable function.

More generally, we suppose that suitable coordinates can be introduced into the
sample space Ω, so that we can regard Ω as a subset of Rn. We call such a sample
space a continuous sample space. We let X be a random variable which represents
the outcome of the experiment. Such a random variable is called a continuous
random variable. We then define a density function for X as follows.
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Density Functions of Continuous Random Variables

Definition 2.1 Let X be a continuous real-valued random variable. A density
function for X is a real-valued function f which satisfies

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx

for all a, b ∈ R. 2

We note that it is not the case that all continuous real-valued random variables
possess density functions. However, in this book, we will only consider continuous
random variables for which density functions exist.

In terms of the density f(x), if E is a subset of R, then

P (X ∈ E) =
∫

E

f(x) dx .

The notation here assumes that E is a subset of R for which
∫

E
f(x) dx makes

sense.

Example 2.10 (Example 2.7 continued) In the spinner experiment, we choose for
our set of outcomes the interval 0 ≤ x < 1, and for our density function

f(x) =
{

1, if 0 ≤ x < 1,
0, otherwise.

If E is the event that the head of the spinner falls in the upper half of the circle,
then E = {x : 0 ≤ x ≤ 1/2 }, and so

P (E) =
∫ 1/2

0

1 dx =
1
2

.

More generally, if E is the event that the head falls in the interval [a, b], then

P (E) =
∫ b

a

1 dx = b− a .

2

Example 2.11 (Example 2.8 continued) In the first dart game experiment, we
choose for our sample space a disc of unit radius in the plane and for our density
function the function

f(x, y) =
{

1/π, if x2 + y2 ≤ 1,
0, otherwise.

The probability that the dart lands inside the subset E is then given by

P (E) =
∫ ∫

E

1
π

dx dy

=
1
π
· (area of E) .

2
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In these two examples, the density function is constant and does not depend
on the particular outcome. It is often the case that experiments in which the
coordinates are chosen at random can be described by constant density functions,
and, as in Section 1.2, we call such density functions uniform or equiprobable. Not
all experiments are of this type, however.

Example 2.12 (Example 2.9 continued) In the second dart game experiment, we
choose for our sample space the unit interval on the real line and for our density
the function

f(r) =
{

2r, if 0 < r < 1,
0, otherwise.

Then the probability that the dart lands at distance r, a ≤ r ≤ b, from the center
of the target is given by

P ([a, b]) =
∫ b

a

2r dr

= b2 − a2 .

Here again, since the density is small when r is near 0 and large when r is near 1, we
see that in this experiment the dart is more likely to land near the rim of the target
than near the center. In terms of the bar graph of Example 2.9, the heights of the
bars approximate the density function, while the areas of the bars approximate the
probabilities of the subintervals (see Figure 2.12). 2

We see in this example that, unlike the case of discrete sample spaces, the
value f(x) of the density function for the outcome x is not the probability of x

occurring (we have seen that this probability is always 0) and in general f(x) is not
a probability at all. In this example, if we take λ = 2 then f(3/4) = 3/2, which
being bigger than 1, cannot be a probability.

Nevertheless, the density function f does contain all the probability information
about the experiment, since the probabilities of all events can be derived from it.
In particular, the probability that the outcome of the experiment falls in an interval
[a, b] is given by

P ([a, b]) =
∫ b

a

f(x) dx ,

that is, by the area under the graph of the density function in the interval [a, b].
Thus, there is a close connection here between probabilities and areas. We have
been guided by this close connection in making up our bar graphs; each bar is chosen
so that its area, and not its height, represents the relative frequency of occurrence,
and hence estimates the probability of the outcome falling in the associated interval.

In the language of the calculus, we can say that the probability of occurrence of
an event of the form [x, x + dx], where dx is small, is approximately given by

P ([x, x + dx]) ≈ f(x)dx ,

that is, by the area of the rectangle under the graph of f . Note that as dx → 0,
this probability → 0, so that the probability P ({x}) of a single point is again 0, as
in Example 2.7.
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A glance at the graph of a density function tells us immediately which events of
an experiment are more likely. Roughly speaking, we can say that where the density
is large the events are more likely, and where it is small the events are less likely.
In Example 2.4 the density function is largest at 1. Thus, given the two intervals
[0, a] and [1, 1 + a], where a is a small positive real number, we see that X is more
likely to take on a value in the second interval than in the first.

Cumulative Distribution Functions of Continuous Random
Variables

We have seen that density functions are useful when considering continuous ran-
dom variables. There is another kind of function, closely related to these density
functions, which is also of great importance. These functions are called cumulative
distribution functions.

Definition 2.2 Let X be a continuous real-valued random variable. Then the
cumulative distribution function of X is defined by the equation

FX(x) = P (X ≤ x) .

2

If X is a continuous real-valued random variable which possesses a density function,
then it also has a cumulative distribution function, and the following theorem shows
that the two functions are related in a very nice way.

Theorem 2.1 Let X be a continuous real-valued random variable with density
function f(x). Then the function defined by

F (x) =
∫ x

−∞
f(t) dt

is the cumulative distribution function of X. Furthermore, we have

d

dx
F (x) = f(x) .

Proof. By definition,
F (x) = P (X ≤ x) .

Let E = (−∞, x]. Then
P (X ≤ x) = P (X ∈ E) ,

which equals ∫ x

−∞
f(t) dt .

Applying the Fundamental Theorem of Calculus to the first equation in the
statement of the theorem yields the second statement. 2
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Figure 2.13: Distribution and density for X = U2.

In many experiments, the density function of the relevant random variable is easy
to write down. However, it is quite often the case that the cumulative distribution
function is easier to obtain than the density function. (Of course, once we have
the cumulative distribution function, the density function can easily be obtained by
differentiation, as the above theorem shows.) We now give some examples which
exhibit this phenomenon.

Example 2.13 A real number is chosen at random from [0, 1] with uniform prob-
ability, and then this number is squared. Let X represent the result. What is the
cumulative distribution function of X? What is the density of X?

We begin by letting U represent the chosen real number. Then X = U2. If
0 ≤ x ≤ 1, then we have

FX(x) = P (X ≤ x)

= P (U2 ≤ x)

= P (U ≤
√

x)

=
√

x .

It is clear that X always takes on a value between 0 and 1, so the cumulative
distribution function of X is given by

FX(x) =

 0, if x ≤ 0,√
x, if 0 ≤ x ≤ 1,

1, if x ≥ 1.

From this we easily calculate that the density function of X is

fX(x) =

 0, if x ≤ 0,
1/(2

√
x), if 0 ≤ x ≤ 1,

0, if x > 1.

Note that FX(x) is continuous, but fX(x) is not. (See Figure 2.13.) 2
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Figure 2.14: Calculation of distribution function for Example 2.14.

When referring to a continuous random variable X (say with a uniform density
function), it is customary to say that “X is uniformly distributed on the interval
[a, b].” It is also customary to refer to the cumulative distribution function of X as
the distribution function of X. Thus, the word “distribution” is being used in sev-
eral different ways in the subject of probability. (Recall that it also has a meaning
when discussing discrete random variables.) When referring to the cumulative dis-
tribution function of a continuous random variable X, we will always use the word
“cumulative” as a modifier, unless the use of another modifier, such as “normal” or
“exponential,” makes it clear. Since the phrase “uniformly densitied on the interval
[a, b]” is not acceptable English, we will have to say “uniformly distributed” instead.

Example 2.14 In Example 2.4, we considered a random variable, defined to be
the sum of two random real numbers chosen uniformly from [0, 1]. Let the random
variables X and Y denote the two chosen real numbers. Define Z = X + Y . We
will now derive expressions for the cumulative distribution function and the density
function of Z.

Here we take for our sample space Ω the unit square in R2 with uniform density.
A point ω ∈ Ω then consists of a pair (x, y) of numbers chosen at random. Then
0 ≤ Z ≤ 2. Let Ez denote the event that Z ≤ z. In Figure 2.14, we show the set
E.8. The event Ez, for any z between 0 and 1, looks very similar to the shaded set
in the figure. For 1 < z ≤ 2, the set Ez looks like the unit square with a triangle
removed from the upper right-hand corner. We can now calculate the probability
distribution FZ of Z; it is given by

FZ(z) = P (Z ≤ z)

= Area of Ez
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Figure 2.16: Calculation of Fz for Example 2.15.

=


0, if z < 0,
(1/2)z2, if 0 ≤ z ≤ 1,
1− (1/2)(2− z)2, if 1 ≤ z ≤ 2,
1, if 2 < z.

The density function is obtained by differentiating this function:

fZ(z) =


0, if z < 0,
z, if 0 ≤ z ≤ 1,
2− z, if 1 ≤ z ≤ 2,
0, if 2 < z.

The reader is referred to Figure 2.15 for the graphs of these functions. 2

Example 2.15 In the dart game described in Example 2.8, what is the distribution
of the distance of the dart from the center of the target? What is its density?

Here, as before, our sample space Ω is the unit disk in R2, with coordinates
(X, Y ). Let Z =

√
X2 + Y 2 represent the distance from the center of the target. Let
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E be the event {Z ≤ z}. Then the distribution function FZ of Z (see Figure 2.16)
is given by

FZ(z) = P (Z ≤ z)

=
Area of E

Area of target
.

Thus, we easily compute that

FZ(z) =

 0, if z ≤ 0,
z2, if 0 ≤ z ≤ 1,
1, if z > 1.

The density fZ(z) is given again by the derivative of FZ(z):

fZ(z) =

 0, if z ≤ 0,
2z, if 0 ≤ z ≤ 1,
0, if z > 1.

The reader is referred to Figure 2.17 for the graphs of these functions.
We can verify this result by simulation, as follows: We choose values for X and

Y at random from [0, 1] with uniform distribution, calculate Z =
√

X2 + Y 2, check
whether 0 ≤ Z ≤ 1, and present the results in a bar graph (see Figure 2.18). 2

Example 2.16 Suppose Mr. and Mrs. Lockhorn agree to meet at the Hanover Inn
between 5:00 and 6:00 P.M. on Tuesday. Suppose each arrives at a time between
5:00 and 6:00 chosen at random with uniform probability. What is the distribution
function for the length of time that the first to arrive has to wait for the other?
What is the density function?

Here again we can take the unit square to represent the sample space, and (X, Y )
as the arrival times (after 5:00 P.M.) for the Lockhorns. Let Z = |X − Y |. Then we
have FX(x) = x and FY (y) = y. Moreover (see Figure 2.19),

FZ(z) = P (Z ≤ z)

= P (|X − Y | ≤ z)

= Area of E .
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Figure 2.18: Simulation results for Example 2.15.

Thus, we have

FZ(z) =

 0, if z ≤ 0,
1− (1− z)2, if 0 ≤ z ≤ 1,
1, if z > 1.

The density fZ(z) is again obtained by differentiation:

fZ(z) =

 0, if z ≤ 0,
2(1− z), if 0 ≤ z ≤ 1,
0, if z > 1.

2

Example 2.17 There are many occasions where we observe a sequence of occur-
rences which occur at “random” times. For example, we might be observing emis-
sions of a radioactive isotope, or cars passing a milepost on a highway, or light bulbs
burning out. In such cases, we might define a random variable X to denote the time
between successive occurrences. Clearly, X is a continuous random variable whose
range consists of the non-negative real numbers. It is often the case that we can
model X by using the exponential density . This density is given by the formula

f(t) =
{

λe−λt, if t ≥ 0,
0, if t < 0.

The number λ is a non-negative real number, and represents the reciprocal of the
average value of X. (This will be shown in Chapter 6.) Thus, if the average time
between occurrences is 30 minutes, then λ = 1/30. A graph of this density function
with λ = 1/30 is shown in Figure 2.20. One can see from the figure that even
though the average value is 30, occasionally much larger values are taken on by X.

Suppose that we have bought a computer that contains a Warp 9 hard drive.
The salesperson says that the average time between breakdowns of this type of hard
drive is 30 months. It is often assumed that the length of time between breakdowns
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Figure 2.21: Residual lifespan of a hard drive.

is distributed according to the exponential density. We will assume that this model
applies here, with λ = 1/30.

Now suppose that we have been operating our computer for 15 months. We
assume that the original hard drive is still running. We ask how long we should
expect the hard drive to continue to run. One could reasonably expect that the
hard drive will run, on the average, another 15 months. (One might also guess
that it will run more than 15 months, since the fact that it has already run for 15
months implies that we don’t have a lemon.) The time which we have to wait is
a new random variable, which we will call Y . Obviously, Y = X − 15. We can
write a computer program to produce a sequence of simulated Y -values. To do this,
we first produce a sequence of X’s, and discard those values which are less than
or equal to 15 (these values correspond to the cases where the hard drive has quit
running before 15 months). To simulate a value of X, we compute the value of the
expression

(
− 1

λ

)
log(rnd) ,

where rnd represents a random real number between 0 and 1. (That this expression
has the exponential density will be shown in Chapter 4.3.) Figure 2.21 shows an
area bar graph of 10,000 simulated Y -values.

The average value of Y in this simulation is 29.74, which is closer to the original
average life span of 30 months than to the value of 15 months which was guessed
above. Also, the distribution of Y is seen to be close to the distribution of X.
It is in fact the case that X and Y have the same distribution. This property is
called the memoryless property , because the amount of time that we have to wait
for an occurrence does not depend on how long we have already waited. The only
continuous density function with this property is the exponential density. 2
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Assignment of Probabilities

A fundamental question in practice is: How shall we choose the probability density
function in describing any given experiment? The answer depends to a great extent
on the amount and kind of information available to us about the experiment. In
some cases, we can see that the outcomes are equally likely. In some cases, we can
see that the experiment resembles another already described by a known density.
In some cases, we can run the experiment a large number of times and make a
reasonable guess at the density on the basis of the observed distribution of outcomes,
as we did in Chapter 1. In general, the problem of choosing the right density function
for a given experiment is a central problem for the experimenter and is not always
easy to solve (see Example 2.6). We shall not examine this question in detail here
but instead shall assume that the right density is already known for each of the
experiments under study.

The introduction of suitable coordinates to describe a continuous sample space,
and a suitable density to describe its probabilities, is not always so obvious, as our
final example shows.

Infinite Tree

Example 2.18 Consider an experiment in which a fair coin is tossed repeatedly,
without stopping. We have seen in Example 1.6 that, for a coin tossed n times, the
natural sample space is a binary tree with n stages. On this evidence we expect
that for a coin tossed repeatedly, the natural sample space is a binary tree with an
infinite number of stages, as indicated in Figure 2.22.

It is surprising to learn that, although the n-stage tree is obviously a finite sample
space, the unlimited tree can be described as a continuous sample space. To see how
this comes about, let us agree that a typical outcome of the unlimited coin tossing
experiment can be described by a sequence of the form ω = {H H T H T T H . . .}.
If we write 1 for H and 0 for T, then ω = {1 1 0 1 0 0 1 . . .}. In this way, each
outcome is described by a sequence of 0’s and 1’s.

Now suppose we think of this sequence of 0’s and 1’s as the binary expansion
of some real number x = .1101001 · · · lying between 0 and 1. (A binary expansion
is like a decimal expansion but based on 2 instead of 10.) Then each outcome is
described by a value of x, and in this way x becomes a coordinate for the sample
space, taking on all real values between 0 and 1. (We note that it is possible for
two different sequences to correspond to the same real number; for example, the
sequences {T H H H H H . . .} and {H T T T T T . . .} both correspond to the real
number 1/2. We will not concern ourselves with this apparent problem here.)

What probabilities should be assigned to the events of this sample space? Con-
sider, for example, the event E consisting of all outcomes for which the first toss
comes up heads and the second tails. Every such outcome has the form .10∗∗∗∗ · · ·,
where ∗ can be either 0 or 1. Now if x is our real-valued coordinate, then the value
of x for every such outcome must lie between 1/2 = .10000 · · · and 3/4 = .11000 · · ·,
and moreover, every value of x between 1/2 and 3/4 has a binary expansion of the
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Figure 2.22: Tree for infinite number of tosses of a coin.

form .10 ∗ ∗ ∗ ∗ · · ·. This means that ω ∈ E if and only if 1/2 ≤ x < 3/4, and in this
way we see that we can describe E by the interval [1/2, 3/4). More generally, every
event consisting of outcomes for which the results of the first n tosses are prescribed
is described by a binary interval of the form [k/2n, (k + 1)/2n).

We have already seen in Section 1.2 that in the experiment involving n tosses,
the probability of any one outcome must be exactly 1/2n. It follows that in the
unlimited toss experiment, the probability of any event consisting of outcomes for
which the results of the first n tosses are prescribed must also be 1/2n. But 1/2n is
exactly the length of the interval of x-values describing E! Thus we see that, just as
with the spinner experiment, the probability of an event E is determined by what
fraction of the unit interval lies in E.

Consider again the statement: The probability is 1/2 that a fair coin will turn up
heads when tossed. We have suggested that one interpretation of this statement is
that if we toss the coin indefinitely the proportion of heads will approach 1/2. That
is, in our correspondence with binary sequences we expect to get a binary sequence
with the proportion of 1’s tending to 1/2. The event E of binary sequences for which
this is true is a proper subset of the set of all possible binary sequences. It does
not contain, for example, the sequence 011011011 . . . (i.e., (011) repeated again and
again). The event E is actually a very complicated subset of the binary sequences,
but its probability can be determined as a limit of probabilities for events with a
finite number of outcomes whose probabilities are given by finite tree measures.
When the probability of E is computed in this way, its value is found to be 1.
This remarkable result is known as the Strong Law of Large Numbers (or Law of
Averages) and is one justification for our frequency concept of probability. We shall
prove a weak form of this theorem in Chapter 8. 2
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Exercises

1 Suppose you choose at random a real number X from the interval [2, 10].

(a) Find the density function f(x) and the probability of an event E for this
experiment, where E is a subinterval [a, b] of [2, 10].

(b) From (a), find the probability that X > 5, that 5 < X < 7, and that
X2 − 12X + 35 > 0.

2 Suppose you choose a real number X from the interval [2, 10] with a density
function of the form

f(x) = Cx ,

where C is a constant.

(a) Find C.

(b) Find P (E), where E = [a, b] is a subinterval of [2, 10].

(c) Find P (X > 5), P (X < 7), and P (X2 − 12X + 35 > 0).

3 Same as Exercise 2, but suppose

f(x) =
C

x
.

4 Suppose you throw a dart at a circular target of radius 10 inches. Assuming
that you hit the target and that the coordinates of the outcomes are chosen
at random, find the probability that the dart falls

(a) within 2 inches of the center.

(b) within 2 inches of the rim.

(c) within the first quadrant of the target.

(d) within the first quadrant and within 2 inches of the rim.

5 Suppose you are watching a radioactive source that emits particles at a rate
described by the exponential density

f(t) = λe−λt ,

where λ = 1, so that the probability P (0, T ) that a particle will appear in
the next T seconds is P ([0, T ]) =

∫ T

0
λe−λt dt. Find the probability that a

particle (not necessarily the first) will appear

(a) within the next second.

(b) within the next 3 seconds.

(c) between 3 and 4 seconds from now.

(d) after 4 seconds from now.
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6 Assume that a new light bulb will burn out after t hours, where t is chosen
from [0,∞) with an exponential density

f(t) = λe−λt .

In this context, λ is often called the failure rate of the bulb.

(a) Assume that λ = 0.01, and find the probability that the bulb will not
burn out before T hours. This probability is often called the reliability
of the bulb.

(b) For what T is the reliability of the bulb = 1/2?

7 Choose a number B at random from the interval [0, 1] with uniform density.
Find the probability that

(a) 1/3 < B < 2/3.

(b) |B − 1/2| ≤ 1/4.

(c) B < 1/4 or 1−B < 1/4.

(d) 3B2 < B.

8 Choose independently two numbers B and C at random from the interval [0, 1]
with uniform density. Note that the point (B,C) is then chosen at random in
the unit square. Find the probability that

(a) B + C < 1/2.

(b) BC < 1/2.

(c) |B − C| < 1/2.

(d) max{B,C} < 1/2.

(e) min{B,C} < 1/2.

(f) B < 1/2 and 1− C < 1/2.

(g) conditions (c) and (f) both hold.

(h) B2 + C2 ≤ 1/2.

(i) (B − 1/2)2 + (C − 1/2)2 < 1/4.

9 Suppose that we have a sequence of occurrences. We assume that the time
X between occurrences is exponentially distributed with λ = 1/10, so on the
average, there is one occurrence every 10 minutes (see Example 2.17). You
come upon this system at time 100, and wait until the next occurrence. Make
a conjecture concerning how long, on the average, you will have to wait. Write
a program to see if your conjecture is right.

10 As in Exercise 9, assume that we have a sequence of occurrences, but now
assume that the time X between occurrences is uniformly distributed between
5 and 15. As before, you come upon this system at time 100, and wait until
the next occurrence. Make a conjecture concerning how long, on the average,
you will have to wait. Write a program to see if your conjecture is right.
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11 For examples such as those in Exercises 9 and 10, it might seem that at least
you should not have to wait on average more than 10 minutes if the average
time between occurrences is 10 minutes. Alas, even this is not true. To see
why, consider the following assumption about the times between occurrences.
Assume that the time between occurrences is 3 minutes with probability .9
and 73 minutes with probability .1. Show by simulation that the average time
between occurrences is 10 minutes, but that if you come upon this system at
time 100, your average waiting time is more than 10 minutes.

12 Take a stick of unit length and break it into three pieces, choosing the break
points at random. (The break points are assumed to be chosen simultane-
ously.) What is the probability that the three pieces can be used to form a
triangle? Hint : The sum of the lengths of any two pieces must exceed the
length of the third, so each piece must have length < 1/2. Now use Exer-
cise 8(g).

13 Take a stick of unit length and break it into two pieces, choosing the break
point at random. Now break the longer of the two pieces at a random point.
What is the probability that the three pieces can be used to form a triangle?

14 Choose independently two numbers B and C at random from the interval
[−1, 1] with uniform distribution, and consider the quadratic equation

x2 + Bx + C = 0 .

Find the probability that the roots of this equation

(a) are both real.

(b) are both positive.

Hints: (a) requires 0 ≤ B2 − 4C, (b) requires 0 ≤ B2 − 4C, B ≤ 0, 0 ≤ C.

15 At the Tunbridge World’s Fair, a coin toss game works as follows. Quarters
are tossed onto a checkerboard. The management keeps all the quarters, but
for each quarter landing entirely within one square of the checkerboard the
management pays a dollar. Assume that the edge of each square is twice the
diameter of a quarter, and that the outcomes are described by coordinates
chosen at random. Is this a fair game?

16 Three points are chosen at random on a circle of unit circumference. What is
the probability that the triangle defined by these points as vertices has three
acute angles? Hint : One of the angles is obtuse if and only if all three points
lie in the same semicircle. Take the circumference as the interval [0, 1]. Take
one point at 0 and the others at B and C.

17 Write a program to choose a random number X in the interval [2, 10] 1000
times and record what fraction of the outcomes satisfy X > 5, what fraction
satisfy 5 < X < 7, and what fraction satisfy x2− 12x + 35 > 0. How do these
results compare with Exercise 1?
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18 Write a program to choose a point (X, Y ) at random in a square of side 20
inches, doing this 10,000 times, and recording what fraction of the outcomes
fall within 19 inches of the center; of these, what fraction fall between 8 and 10
inches of the center; and, of these, what fraction fall within the first quadrant
of the square. How do these results compare with those of Exercise 4?

19 Write a program to simulate the problem describe in Exercise 7 (see Exer-
cise 17). How do the simulation results compare with the results of Exercise 7?

20 Write a program to simulate the problem described in Exercise 12.

21 Write a program to simulate the problem described in Exercise 16.

22 Write a program to carry out the following experiment. A coin is tossed 100
times and the number of heads that turn up is recorded. This experiment
is then repeated 1000 times. Have your program plot a bar graph for the
proportion of the 1000 experiments in which the number of heads is n, for
each n in the interval [35, 65]. Does the bar graph look as though it can be fit
with a normal curve?

23 Write a program that picks a random number between 0 and 1 and computes
the negative of its logarithm. Repeat this process a large number of times and
plot a bar graph to give the number of times that the outcome falls in each
interval of length 0.1 in [0, 10]. On this bar graph plot a graph of the density
f(x) = e−x. How well does this density fit your graph?



Chapter 3

Combinatorics

3.1 Permutations

Many problems in probability theory require that we count the number of ways
that a particular event can occur. For this, we study the topics of permutations and
combinations. We consider permutations in this section and combinations in the
next section.

Before discussing permutations, it is useful to introduce a general counting tech-
nique that will enable us to solve a variety of counting problems, including the
problem of counting the number of possible permutations of n objects.

Counting Problems

Consider an experiment that takes place in several stages and is such that the
number of outcomes m at the nth stage is independent of the outcomes of the
previous stages. The number m may be different for different stages. We want to
count the number of ways that the entire experiment can be carried out.

Example 3.1 You are eating at Émile’s restaurant and the waiter informs you
that you have (a) two choices for appetizers: soup or juice; (b) three for the main
course: a meat, fish, or vegetable dish; and (c) two for dessert: ice cream or cake.
How many possible choices do you have for your complete meal? We illustrate the
possible meals by a tree diagram shown in Figure 3.1. Your menu is decided in three
stages—at each stage the number of possible choices does not depend on what is
chosen in the previous stages: two choices at the first stage, three at the second,
and two at the third. From the tree diagram we see that the total number of choices
is the product of the number of choices at each stage. In this examples we have
2 · 3 · 2 = 12 possible menus. Our menu example is an example of the following
general counting technique. 2

75
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Figure 3.1: Tree for your menu.

A Counting Technique

A task is to be carried out in a sequence of r stages. There are n1 ways to carry
out the first stage; for each of these n1 ways, there are n2 ways to carry out the
second stage; for each of these n2 ways, there are n3 ways to carry out the third
stage, and so forth. Then the total number of ways in which the entire task can be
accomplished is given by the product N = n1 · n2 · . . . · nr.

Tree Diagrams

It will often be useful to use a tree diagram when studying probabilities of events
relating to experiments that take place in stages and for which we are given the
probabilities for the outcomes at each stage. For example, assume that the owner
of Émile’s restaurant has observed that 80 percent of his customers choose the soup
for an appetizer and 20 percent choose juice. Of those who choose soup, 50 percent
choose meat, 30 percent choose fish, and 20 percent choose the vegetable dish. Of
those who choose juice for an appetizer, 30 percent choose meat, 40 percent choose
fish, and 30 percent choose the vegetable dish. We can use this to estimate the
probabilities at the first two stages as indicated on the tree diagram of Figure 3.2.

We choose for our sample space the set Ω of all possible paths ω = ω1, ω2,
. . . , ω6 through the tree. How should we assign our probability distribution? For
example, what probability should we assign to the customer choosing soup and then
the meat? If 8/10 of the customers choose soup and then 1/2 of these choose meat,
a proportion 8/10 · 1/2 = 4/10 of the customers choose soup and then meat. This
suggests choosing our probability distribution for each path through the tree to be
the product of the probabilities at each of the stages along the path. This results in
the probability distribution for the sample points ω indicated in Figure 3.2. (Note
that m(ω1) + · · ·+ m(ω6) = 1.) From this we see, for example, that the probability
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Figure 3.2: Two-stage probability assignment.

that a customer chooses meat is m(ω1) + m(ω4) = .46.
We shall say more about these tree measures when we discuss the concept of

conditional probability in Chapter 4. We return now to more counting problems.

Example 3.2 We can show that there are at least two people in Columbus, Ohio,
who have the same three initials. Assuming that each person has three initials,
there are 26 possibilities for a person’s first initial, 26 for the second, and 26 for the
third. Therefore, there are 263 = 17,576 possible sets of initials. This number is
smaller than the number of people living in Columbus, Ohio; hence, there must be
at least two people with the same three initials. 2

We consider next the celebrated birthday problem—often used to show that
naive intuition cannot always be trusted in probability.

Birthday Problem

Example 3.3 How many people do we need to have in a room to make it a favorable
bet (probability of success greater than 1/2) that two people in the room will have
the same birthday?

Since there are 365 possible birthdays, it is tempting to guess that we would
need about 1/2 this number, or 183. You would surely win this bet. In fact, the
number required for a favorable bet is only 23. To show this, we find the probability
pr that, in a room with r people, there is no duplication of birthdays; we will have
a favorable bet if this probability is less than one half.
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Number of people Probability that all birthdays are different

20 .5885616
21 .5563117
22 .5243047
23 .4927028
24 .4616557
25 .4313003

Table 3.1: Birthday problem.

Assume that there are 365 possible birthdays for each person (we ignore leap
years). Order the people from 1 to r. For a sample point ω, we choose a possible
sequence of length r of birthdays each chosen as one of the 365 possible dates.
There are 365 possibilities for the first element of the sequence, and for each of
these choices there are 365 for the second, and so forth, making 365r possible
sequences of birthdays. We must find the number of these sequences that have no
duplication of birthdays. For such a sequence, we can choose any of the 365 days
for the first element, then any of the remaining 364 for the second, 363 for the third,
and so forth, until we make r choices. For the rth choice, there will be 365− r + 1
possibilities. Hence, the total number of sequences with no duplications is

365 · 364 · 363 · . . . · (365− r + 1) .

Thus, assuming that each sequence is equally likely,

pr =
365 · 364 · . . . · (365− r + 1)

365r
.

We denote the product
(n)(n− 1) · · · (n− r + 1)

by (n)r (read “n down r,” or “n lower r”). Thus,

pr =
(365)r

(365)r
.

The program Birthday carries out this computation and prints the probabilities
for r = 20 to 25. Running this program, we get the results shown in Table 3.1. As
we asserted above, the probability for no duplication changes from greater than one
half to less than one half as we move from 22 to 23 people. To see how unlikely it is
that we would lose our bet for larger numbers of people, we have run the program
again, printing out values from r = 10 to r = 100 in steps of 10. We see that in
a room of 40 people the odds already heavily favor a duplication, and in a room
of 100 the odds are overwhelmingly in favor of a duplication. We have assumed
that birthdays are equally likely to fall on any particular day. Statistical evidence
suggests that this is not true. However, it is intuitively clear (but not easy to prove)
that this makes it even more likely to have a duplication with a group of 23 people.
(See Exercise 19 to find out what happens on planets with more or fewer than 365
days per year.) 2
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Number of people Probability that all birthdays are different

10 .8830518
20 .5885616
30 .2936838
40 .1087682
50 .0296264
60 .0058773
70 .0008404
80 .0000857
90 .0000062
100 .0000003

Table 3.2: Birthday problem.

We now turn to the topic of permutations.

Permutations

Definition 3.1 Let A be any finite set. A permutation of A is a one-to-one mapping
of A onto itself. 2

To specify a particular permutation we list the elements of A and, under them,
show where each element is sent by the one-to-one mapping. For example, if A =
{a, b, c} a possible permutation σ would be

σ =
(

a b c

b c a

)
.

By the permutation σ, a is sent to b, b is sent to c, and c is sent to a. The
condition that the mapping be one-to-one means that no two elements of A are
sent, by the mapping, into the same element of A.

We can put the elements of our set in some order and rename them 1, 2, . . . , n.
Then, a typical permutation of the set A = {a1, a2, a3, a4} can be written in the
form

σ =
(

1 2 3 4
2 1 4 3

)
,

indicating that a1 went to a2, a2 to a1, a3 to a4, and a4 to a3.
If we always choose the top row to be 1 2 3 4 then, to prescribe the permutation,

we need only give the bottom row, with the understanding that this tells us where 1
goes, 2 goes, and so forth, under the mapping. When this is done, the permutation
is often called a rearrangement of the n objects 1, 2, 3, . . . , n. For example, all
possible permutations, or rearrangements, of the numbers A = {1, 2, 3} are:

123, 132, 213, 231, 312, 321 .

It is an easy matter to count the number of possible permutations of n objects.
By our general counting principle, there are n ways to assign the first element, for
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n n!

0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

10 3628800

Table 3.3: Values of the factorial function.

each of these we have n − 1 ways to assign the second object, n − 2 for the third,
and so forth. This proves the following theorem.

Theorem 3.1 The total number of permutations of a set A of n elements is given
by n · (n − 1) · (n− 2) · . . . · 1. 2

It is sometimes helpful to consider orderings of subsets of a given set. This
prompts the following definition.

Definition 3.2 Let A be an n-element set, and let k be an integer between 0 and
n. Then a k-permutation of A is an ordered listing of a subset of A of size k. 2

Using the same techniques as in the last theorem, the following result is easily
proved.

Theorem 3.2 The total number of k-permutations of a set A of n elements is given
by n · (n− 1) · (n− 2) · . . . · (n− k + 1). 2

Factorials

The number given in Theorem 3.1 is called n factorial, and is denoted by n!. The
expression 0! is defined to be 1 to make certain formulas come out simpler. The
first few values of this function are shown in Table 3.3. The reader will note that
this function grows very rapidly.

The expression n! will enter into many of our calculations, and we shall need to
have some estimate of its magnitude when n is large. It is clearly not practical to
make exact calculations in this case. We shall instead use a result called Stirling’s
formula. Before stating this formula we need a definition.
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n n! Approximation Ratio

1 1 .922 1.084
2 2 1.919 1.042
3 6 5.836 1.028
4 24 23.506 1.021
5 120 118.019 1.016
6 720 710.078 1.013
7 5040 4980.396 1.011
8 40320 39902.395 1.010
9 362880 359536.873 1.009

10 3628800 3598696.619 1.008

Table 3.4: Stirling approximations to the factorial function.

Definition 3.3 Let an and bn be two sequences of numbers. We say that an is
asymptotically equal to bn, and write an ∼ bn, if

lim
n→∞

an

bn
= 1 .

2

Example 3.4 If an = n +
√

n and bn = n then, since an/bn = 1 + 1/
√

n and this
ratio tends to 1 as n tends to infinity, we have an ∼ bn. 2

Theorem 3.3 (Stirling’s Formula) The sequence n! is asymptotically equal to

nne−n
√

2πn .

2

The proof of Stirling’s formula may be found in most analysis texts. Let us
verify this approximation by using the computer. The program StirlingApprox-
imations prints n!, the Stirling approximation, and, finally, the ratio of these two
numbers. Sample output of this program is shown in Table 3.4. Note that, while
the ratio of the numbers is getting closer to 1, the difference between the exact
value and the approximation is increasing, and indeed, this difference will tend to
infinity as n tends to infinity, even though the ratio tends to 1. (This was also true
in our Example 3.4 where n +

√
n ∼ n, but the difference is

√
n.)

Generating Random Permutations

We now consider the question of generating a random permutation of the integers
between 1 and n. Consider the following experiment. We start with a deck of n

cards, labelled 1 through n. We choose a random card out of the deck, note its label,
and put the card aside. We repeat this process until all n cards have been chosen.
It is clear that each permutation of the integers from 1 to n can occur as a sequence
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Number of fixed points Fraction of permutations
n = 10 n = 20 n = 30

0 .362 .370 .358
1 .368 .396 .358
2 .202 .164 .192
3 .052 .060 .070
4 .012 .008 .020
5 .004 .002 .002

Average number of fixed points .996 .948 1.042

Table 3.5: Fixed point distributions.

of labels in this experiment, and that each sequence of labels is equally likely to
occur. In our implementations of the computer algorithms, the above procedure is
called RandomPermutation.

Fixed Points

There are many interesting problems that relate to properties of a permutation
chosen at random from the set of all permutations of a given finite set. For example,
since a permutation is a one-to-one mapping of the set onto itself, it is interesting to
ask how many points are mapped onto themselves. We call such points fixed points
of the mapping.

Let pk(n) be the probability that a random permutation of the set {1, 2, . . . , n}
has exactly k fixed points. We will attempt to learn something about these prob-
abilities using simulation. The program FixedPoints uses the procedure Ran-
domPermutation to generate random permutations and count fixed points. The
program prints the proportion of times that there are k fixed points as well as the
average number of fixed points. The results of this program for 500 simulations for
the cases n = 10, 20, and 30 are shown in Table 3.5. Notice the rather surprising
fact that our estimates for the probabilities do not seem to depend very heavily on
the number of elements in the permutation. For example, the probability that there
are no fixed points, when n = 10, 20, or 30 is estimated to be between .35 and .37.
We shall see later (see Example 3.12) that for n ≥ 10 the exact probabilities pn(0)
are, to six decimal place accuracy, equal to 1/e ≈ .367879. Thus, for all practi-
cal purposes, after n = 10 the probability that a random permutation of the set
{1, 2, . . . , n} has no fixed points does not depend upon n. These simulations also
suggest that the average number of fixed points is close to 1. It can be shown (see
Example 6.8) that the average is exactly equal to 1 for all n.

More picturesque versions of the fixed-point problem are: You have arranged
the books on your book shelf in alphabetical order by author and they get returned
to your shelf at random; what is the probability that exactly k of the books end up
in their correct position? (The library problem.) In a restaurant n hats are checked
and they are hopelessly scrambled; what is the probability that no one gets his own
hat back? (The hat check problem.) In the Historical Remarks at the end of this
section, we give one method for solving the hat check problem exactly. Another
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Date Snowfall in inches
1974 75
1975 88
1976 72
1977 110
1978 85
1979 30
1980 55
1981 86
1982 51
1983 64

Table 3.6: Snowfall in Hanover.

Year 1 2 3 4 5 6 7 8 9 10
Ranking 6 9 5 10 7 1 3 8 2 4

Table 3.7: Ranking of total snowfall.

method is given in Example 3.12.

Records

Here is another interesting probability problem that involves permutations. Esti-
mates for the amount of measured snow in inches in Hanover, New Hampshire, in
the ten years from 1974 to 1983 are shown in Table 3.6. Suppose we have started
keeping records in 1974. Then our first year’s snowfall could be considered a record
snowfall starting from this year. A new record was established in 1975; the next
record was established in 1977, and there were no new records established after
this year. Thus, in this ten-year period, there were three records established: 1974,
1975, and 1977. The question that we ask is: How many records should we expect
to be established in such a ten-year period? We can count the number of records
in terms of a permutation as follows: We number the years from 1 to 10. The
actual amounts of snowfall are not important but their relative sizes are. We can,
therefore, change the numbers measuring snowfalls to numbers 1 to 10 by replacing
the smallest number by 1, the next smallest by 2, and so forth. (We assume that
there are no ties.) For our example, we obtain the data shown in Table 3.7.

This gives us a permutation of the numbers from 1 to 10 and, from this per-
mutation, we can read off the records; they are in years 1, 2, and 4. Thus we can
define records for a permutation as follows:

Definition 3.4 Let σ be a permutation of the set {1, 2, . . . , n}. Then i is a record
of σ if either i = 1 or σ(j) < σ(i) for every j = 1, . . . , i− 1. 2

Now if we regard all rankings of snowfalls over an n-year period to be equally
likely (and allow no ties), we can estimate the probability that there will be k

records in n years as well as the average number of records by simulation.
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We have written a program Records that counts the number of records in ran-
domly chosen permutations. We have run this program for the cases n = 10, 20, 30.
For n = 10 the average number of records is 2.968, for 20 it is 3.656, and for 30
it is 3.960. We see now that the averages increase, but very slowly. We shall see
later (see Example 6.11) that the average number is approximately log n. Since
log 10 = 2.3, log 20 = 3, and log 30 = 3.4, this is consistent with the results of our
simulations.

As remarked earlier, we shall be able to obtain formulas for exact results of
certain problems of the above type. However, only minor changes in the problem
make this impossible. The power of simulation is that minor changes in a problem
do not make the simulation much more difficult. (See Exercise 20 for an interesting
variation of the hat check problem.)

List of Permutations

Another method to solve problems that is not sensitive to small changes in the
problem is to have the computer simply list all possible permutations and count the
fraction that have the desired property. The program AllPermutations produces
a list of all of the permutations of n. When we try running this program, we run
into a limitation on the use of the computer. The number of permutations of n

increases so rapidly that even to list all permutations of 20 objects is impractical.

Historical Remarks

Our basic counting principle stated that if you can do one thing in r ways and for
each of these another thing in s ways, then you can do the pair in rs ways. This
is such a self-evident result that you might expect that it occurred very early in
mathematics. N. L. Biggs suggests that we might trace an example of this principle
as follows: First, he relates a popular nursery rhyme dating back to at least 1730:

As I was going to St. Ives,
I met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits.
Kits, cats, sacks and wives,
How many were going to St. Ives?

(You need our principle only if you are not clever enough to realize that you are
supposed to answer one, since only the narrator is going to St. Ives; the others are
going in the other direction!)

He also gives a problem appearing on one of the oldest surviving mathematical
manuscripts of about 1650 B.C., roughly translated as:
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Houses 7
Cats 49
Mice 343
Wheat 2401
Hekat 16807

19607

The following interpretation has been suggested: there are seven houses, each
with seven cats; each cat kills seven mice; each mouse would have eaten seven heads
of wheat, each of which would have produced seven hekat measures of grain. With
this interpretation, the table answers the question of how many hekat measures
were saved by the cats’ actions. It is not clear why the writer of the table wanted
to add the numbers together.1

One of the earliest uses of factorials occurred in Euclid’s proof that there are
infinitely many prime numbers. Euclid argued that there must be a prime number
between n and n! + 1 as follows: n! and n! + 1 cannot have common factors. Either
n!+1 is prime or it has a proper factor. In the latter case, this factor cannot divide
n! and hence must be between n and n! + 1. If this factor is not prime, then it
has a factor that, by the same argument, must be bigger than n. In this way, we
eventually reach a prime bigger than n, and this holds for all n.

The “n!” rule for the number of permutations seems to have occurred first in
India. Examples have been found as early as 300 B.C., and by the eleventh century
the general formula seems to have been well known in India and then in the Arab
countries.

The hat check problem is found in an early probability book written by de Mont-
mort and first printed in 1708.2 It appears in the form of a game called Treize. In
a simplified version of this game considered by de Montmort one turns over cards
numbered 1 to 13, calling out 1, 2, . . . , 13 as the cards are examined. De Montmort
asked for the probability that no card that is turned up agrees with the number
called out.

This probability is the same as the probability that a random permutation of
13 elements has no fixed point. De Montmort solved this problem by the use of a
recursion relation as follows: let wn be the number of permutations of n elements
with no fixed point (such permutations are called derangements). Then w1 = 0 and
w2 = 1.

Now assume that n ≥ 3 and choose a derangement of the integers between 1 and
n. Let k be the integer in the first position in this derangement. By the definition of
derangement, we have k 6= 1. There are two possibilities of interest concerning the
position of 1 in the derangement: either 1 is in the kth position or it is elsewhere. In
the first case, the n− 2 remaining integers can be positioned in wn−2 ways without
resulting in any fixed points. In the second case, we consider the set of integers
{1, 2, . . . , k − 1, k + 1, . . . , n}. The numbers in this set must occupy the positions
{2, 3, . . . , n} so that none of the numbers other than 1 in this set are fixed, and

1N. L. Biggs, “The Roots of Combinatorics,” Historia Mathematica, vol. 6 (1979), pp. 109–136.
2P. R. de Montmort, Essay d’Analyse sur des Jeux de Hazard, 2d ed. (Paris: Quillau, 1713).
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also so that 1 is not in position k. The number of ways of achieving this kind of
arrangement is just wn−1. Since there are n− 1 possible values of k, we see that

wn = (n− 1)wn−1 + (n− 1)wn−2

for n ≥ 3. One might conjecture from this last equation that the sequence {wn}
grows like the sequence {n!}.

In fact, it is easy to prove by induction that

wn = nwn−1 + (−1)n .

Then pi = wi/i! satisfies

pi − pi−1 =
(−1)i

i!
.

If we sum from i = 2 to n, and use the fact that p1 = 0, we obtain

pn =
1
2!
− 1

3!
+ · · ·+ (−1)n

n!
.

This agrees with the first n + 1 terms of the expansion for ex for x = −1 and hence
for large n is approximately e−1 ≈ .368. David remarks that this was possibly
the first use of the exponential function in probability.3 We shall see another way
to derive de Montmort’s result in the next section, using a method known as the
Inclusion-Exclusion method.

Recently, a related problem appeared in a column of Marilyn vos Savant.4

Charles Price wrote to ask about his experience playing a certain form of solitaire,
sometimes called “frustration solitaire.” In this particular game, a deck of cards
is shuffled, and then dealt out, one card at a time. As the cards are being dealt,
the player counts from 1 to 13, and then starts again at 1. (Thus, each number is
counted four times.) If a number that is being counted coincides with the rank of
the card that is being turned up, then the player loses the game. Price found that
he rarely won and wondered how often he should win. Vos Savant remarked that
the expected number of matches is 4 so it should be difficult to win the game.

Finding the chance of winning is a harder problem than the one that de Mont-
mort solved because, when one goes through the entire deck, there are different
patterns for the matches that might occur. For example matches may occur for two
cards of the same rank, say two aces, or for two different ranks, say a two and a
three.

A discussion of this problem can be found in Riordan.5 In this book, it is shown
that as n →∞, the probability of no matches tends to 1/e4.

The original game of Treize is more difficult to analyze than frustration solitaire.
The game of Treize is played as follows. One person is chosen as dealer and the
others are players. Each player, other than the dealer, puts up a stake. The dealer
shuffles the cards and turns them up one at a time calling out, “Ace, two, three,...,

3F. N. David, Games, Gods and Gambling (London: Griffin, 1962), p. 146.
4M. vos Savant, Ask Marilyn, Parade Magazine, Boston Globe, 21 August 1994.
5J. Riordan, An Introduction to Combinatorial Analysis, (New York: John Wiley & Sons,

1958).
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king,” just as in frustration solitaire. If the dealer goes through the 13 cards without
a match he pays the players an amount equal to their stake, and the deal passes to
someone else. If there is a match the dealer collects the players’ stakes; the players
put up new stakes, and the dealer continues through the deck, calling out, “Ace,
two, three, ....” If the dealer runs out of cards he reshuffles and continues the count
where he left off. He continues until there is a run of 13 without a match and then
a new dealer is chosen.

The question at this point is how much money can the dealer expect to win from
each player. De Montmort found that if each player puts up a stake of 1, say, then
the dealer will win approximately .801 from each player.

Peter Doyle calculated the exact amount that the dealer can expect to win. The
answer is:

26516072156010218582227607912734182784642120482136091446715371962089931
52311343541724554334912870541440299239251607694113500080775917818512013
82176876653563173852874555859367254632009477403727395572807459384342747
87664965076063990538261189388143513547366316017004945507201764278828306
60117107953633142734382477922709835281753299035988581413688367655833113
24476153310720627474169719301806649152698704084383914217907906954976036
28528211590140316202120601549126920880824913325553882692055427830810368
57818861208758248800680978640438118582834877542560955550662878927123048
26997601700116233592793308297533642193505074540268925683193887821301442
70519791882/
33036929133582592220117220713156071114975101149831063364072138969878007
99647204708825303387525892236581323015628005621143427290625658974433971
65719454122908007086289841306087561302818991167357863623756067184986491
35353553622197448890223267101158801016285931351979294387223277033396967
79797069933475802423676949873661605184031477561560393380257070970711959
69641268242455013319879747054693517809383750593488858698672364846950539
88868628582609905586271001318150621134407056983214740221851567706672080
94586589378459432799868706334161812988630496327287254818458879353024498
00322425586446741048147720934108061350613503856973048971213063937040515
59533731591.

This is .803 to 3 decimal places. A description of the algorithm used to find this
answer can be found on his Web page.6 A discussion of this problem and other
problems can be found in Doyle et al.7

The birthday problem does not seem to have a very old history. Problems of
this type were first discussed by von Mises.8 It was made popular in the 1950s by
Feller’s book.9

6P. Doyle, “Solution to Montmort’s Probleme du Treize,” http://math.ucsd.edu/̃ doyle/.
7P. Doyle, C. Grinstead, and J. Snell, “Frustration Solitaire,” UMAP Journal , vol. 16, no. 2

(1995), pp. 137-145.
8R. von Mises, “Über Aufteilungs- und Besetzungs-Wahrscheinlichkeiten,” Revue de la Faculté

des Sciences de l’Université d’Istanbul, N. S. vol. 4 (1938-39), pp. 145-163.
9W. Feller, Introduction to Probability Theory and Its Applications, vol. 1, 3rd ed. (New York:



88 CHAPTER 3. COMBINATORICS

Stirling presented his formula

n! ∼
√

2πn
(n

e

)n

in his work Methodus Differentialis published in 1730.10 This approximation was
used by de Moivre in establishing his celebrated central limit theorem that we
will study in Chapter 9. De Moivre himself had independently established this
approximation, but without identifying the constant π. Having established the
approximation

2B√
n

for the central term of the binomial distribution, where the constant B was deter-
mined by an infinite series, de Moivre writes:

. . . my worthy and learned Friend, Mr. James Stirling, who had applied
himself after me to that inquiry, found that the Quantity B did denote
the Square-root of the Circumference of a Circle whose Radius is Unity,
so that if that Circumference be called c the Ratio of the middle Term
to the Sum of all Terms will be expressed by 2/

√
nc . . . .11

Exercises

1 Four people are to be arranged in a row to have their picture taken. In how
many ways can this be done?

2 An automobile manufacturer has four colors available for automobile exteri-
ors and three for interiors. How many different color combinations can he
produce?

3 In a digital computer, a bit is one of the integers {0,1}, and a word is any
string of 32 bits. How many different words are possible?

4 What is the probability that at least 2 of the presidents of the United States
have died on the same day of the year? If you bet this has happened, would
you win your bet?

5 There are three different routes connecting city A to city B. How many ways
can a round trip be made from A to B and back? How many ways if it is
desired to take a different route on the way back?

6 In arranging people around a circular table, we take into account their seats
relative to each other, not the actual position of any one person. Show that
n people can be arranged around a circular table in (n− 1)! ways.

John Wiley & Sons, 1968).
10J. Stirling, Methodus Differentialis, (London: Bowyer, 1730).
11A. de Moivre, The Doctrine of Chances, 3rd ed. (London: Millar, 1756).
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7 Five people get on an elevator that stops at five floors. Assuming that each
has an equal probability of going to any one floor, find the probability that
they all get off at different floors.

8 A finite set Ω has n elements. Show that if we count the empty set and Ω as
subsets, there are 2n subsets of Ω.

9 A more refined inequality for approximating n! is given by

√
2πn

(n

e

)n

e1/(12n+1) < n! <
√

2πn
(n

e

)n

e1/(12n) .

Write a computer program to illustrate this inequality for n = 1 to 9.

10 A deck of ordinary cards is shuffled and 13 cards are dealt. What is the
probability that the last card dealt is an ace?

11 There are n applicants for the director of computing. The applicants are inter-
viewed independently by each member of the three-person search committee
and ranked from 1 to n. A candidate will be hired if he or she is ranked first
by at least two of the three interviewers. Find the probability that a candidate
will be accepted if the members of the committee really have no ability at all
to judge the candidates and just rank the candidates randomly. In particular,
compare this probability for the case of three candidates and the case of ten
candidates.

12 A symphony orchestra has in its repertoire 30 Haydn symphonies, 15 modern
works, and 9 Beethoven symphonies. Its program always consists of a Haydn
symphony followed by a modern work, and then a Beethoven symphony.

(a) How many different programs can it play?

(b) How many different programs are there if the three pieces can be played
in any order?

(c) How many different three-piece programs are there if more than one
piece from the same category can be played and they can be played in
any order?

13 A certain state has license plates showing three numbers and three letters.
How many different license plates are possible

(a) if the numbers must come before the letters?

(b) if there is no restriction on where the letters and numbers appear?

14 The door on the computer center has a lock which has five buttons numbered
from 1 to 5. The combination of numbers that opens the lock is a sequence
of five numbers and is reset every week.

(a) How many combinations are possible if every button must be used once?
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(b) Assume that the lock can also have combinations that require you to
push two buttons simultaneously and then the other three one at a time.
How many more combinations does this permit?

15 A computing center has 3 processors that receive n jobs, with the jobs assigned
to the processors purely at random so that all of the 3n possible assignments
are equally likely. Find the probability that exactly one processor has no jobs.

16 Prove that at least two people in Philadelphia, Pennsylvania, have the same
initials, assuming no one has more than four initials.

17 Find a formula for the probability that among a set of n people, at least two
have their birthdays in the same month of the year (assuming the months are
equally likely for birthdays).

18 Consider the problem of finding the probability of more than one coincidence
of birthdays in a group of n people. These include, for example, three people
with the same birthday, or two pairs of people with the same birthday, or
larger coincidences. Show how you could compute this probability, and write
a computer program to carry out this computation. Use your program to find
the smallest number of people for which it would be a favorable bet that there
would be more than one coincidence of birthdays.

*19 Suppose that on planet Zorg a year has n days, and that the lifeforms there
are equally likely to have hatched on any day of the year. We would like
to estimate d, which is the minimum number of lifeforms needed so that the
probability of at least two sharing a birthday exceeds 1/2.

(a) In Example 3.3, it was shown that in a set of d lifeforms, the probability
that no two life forms share a birthday is

(n)d

nd
,

where (n)d = (n)(n − 1) · · · (n − d + 1). Thus, we would like to set this
equal to 1/2 and solve for d.

(b) Using Stirling’s Formula, show that

(n)d

nd
∼
(

1 +
d

n− d

)n−d+1/2

e−d .

(c) Now take the logarithm of the right-hand expression, and use the fact
that for small values of x, we have

log(1 + x) ∼ x− x2

2
.

(We are implicitly using the fact that d is of smaller order of magnitude
than n. We will also use this fact in part (d).)
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(d) Set the expression found in part (c) equal to − log(2), and solve for d as
a function of n, thereby showing that

d ∼
√

2(log 2) n .

Hint : If all three summands in the expression found in part (b) are used,
one obtains a cubic equation in d. If the smallest of the three terms is
thrown away, one obtains a quadratic equation in d.

(e) Use a computer to calculate the exact values of d for various values of
n. Compare these values with the approximate values obtained by using
the answer to part d).

20 At a mathematical conference, ten participants are randomly seated around
a circular table for meals. Using simulation, estimate the probability that no
two people sit next to each other at both lunch and dinner. Can you make an
intelligent conjecture for the case of n participants when n is large?

21 Modify the program AllPermutations to count the number of permutations
of n objects that have exactly j fixed points for j = 0, 1, 2, . . . , n. Run
your program for n = 2 to 6. Make a conjecture for the relation between the
number that have 0 fixed points and the number that have exactly 1 fixed
point. A proof of the correct conjecture can be found in Wilf.12

22 Mr. Wimply Dimple, one of London’s most prestigious watch makers, has
come to Sherlock Holmes in a panic, having discovered that someone has
been producing and selling crude counterfeits of his best selling watch. The 16
counterfeits so far discovered bear stamped numbers, all of which fall between
1 and 56, with the largest stamped number equaling 56, and Dimple is anxious
to know the extent of the forger’s work. All present agree that it seems
reasonable to assume that the counterfeits thus far produced bear consecutive
numbers from 1 to whatever the total number is.

“Chin up, Dimple,” opines Dr. Watson. “I shouldn’t worry overly much if
I were you; the Maximum Likelihood Principle, which estimates the total
number as precisely that which gives the highest probability for the series
of numbers found, suggests that we guess 56 itself as the total. Thus, your
forgers are not a big operation, and we shall have them safely behind bars
before your business suffers significantly.”

“Stuff, nonsense, and bother your fancy principles, Watson,” counters Holmes.
“Anyone can see that, of course, there must be quite a few more than 56
watches—why the odds of our having discovered precisely the highest num-
bered watch made are laughably negligible. A much better guess would be
twice 56.”

(a) Show that Watson is correct that the Maximum Likelihood Principle
gives 56.

12H. S. Wilf, “A Bijection in the Theory of Derangements,” Mathematics Magazine, vol. 57,
no. 1 (1984), pp. 37–40.
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(b) Write a computer program to compare Holmes’s and Watson’s guessing
strategies as follows: fix a total N and choose 16 integers randomly
between 1 and N . Let m denote the largest of these. Then Watson’s
guess for N is m, while Holmes’s is 2m. See which of these is closer to
N . Repeat this experiment (with N still fixed) a hundred or more times,
and determine the proportion of times that each comes closer. Whose
seems to be the better strategy?

23 Barbara Smith is interviewing candidates to be her secretary. As she inter-
views the candidates, she can determine the relative rank of the candidates
but not the true rank. Thus, if there are six candidates and their true rank is
6, 1, 4, 2, 3, 5, (where 1 is best) then after she had interviewed the first three
candidates she would rank them 3, 1, 2. As she interviews each candidate,
she must either accept or reject the candidate. If she does not accept the
candidate after the interview, the candidate is lost to her. She wants to de-
cide on a strategy for deciding when to stop and accept a candidate that will
maximize the probability of getting the best candidate. Assume that there
are n candidates and they arrive in a random rank order.

(a) What is the probability that Barbara gets the best candidate if she inter-
views all of the candidates? What is it if she chooses the first candidate?

(b) Assume that Barbara decides to interview the first half of the candidates
and then continue interviewing until getting a candidate better than any
candidate seen so far. Show that she has a better than 25 percent chance
of ending up with the best candidate.

24 For the task described in Exercise 23, it can be shown13 that the best strategy
is to pass over the first k − 1 candidates where k is the smallest integer for
which

1
k

+
1

k + 1
+ · · ·+ 1

n− 1
≤ 1 .

Using this strategy the probability of getting the best candidate is approxi-
mately 1/e = .368. Write a program to simulate Barbara Smith’s interviewing
if she uses this optimal strategy, using n = 10, and see if you can verify that
the probability of success is approximately 1/e.

3.2 Combinations

Having mastered permutations, we now consider combinations. Let U be a set with
n elements; we want to count the number of distinct subsets of the set U that have
exactly j elements. The empty set and the set U are considered to be subsets of U .
The empty set is usually denoted by φ.

13E. B. Dynkin and A. A. Yushkevich, Markov Processes: Theorems and Problems, trans. J. S.
Wood (New York: Plenum, 1969).
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Example 3.5 Let U = {a, b, c}. The subsets of U are

φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} .

2

Binomial Coefficients

The number of distinct subsets with j elements that can be chosen from a set with
n elements is denoted by

(
n
j

)
, and is pronounced “n choose j.” The number

(
n
j

)
is

called a binomial coefficient. This terminology comes from an application to algebra
which will be discussed later in this section.

In the above example, there is one subset with no elements, three subsets with
exactly 1 element, three subsets with exactly 2 elements, and one subset with exactly
3 elements. Thus,

(
3
0

)
= 1,

(
3
1

)
= 3,

(
3
2

)
= 3, and

(
3
3

)
= 1. Note that there are

23 = 8 subsets in all. (We have already seen that a set with n elements has 2n

subsets; see Exercise 3.1.8.) It follows that

(
3
0

)
+
(

3
1

)
+
(

3
2

)
+
(

3
3

)
= 23 = 8 ,

(
n

0

)
=
(

n

n

)
= 1 .

Assume that n > 0. Then, since there is only one way to choose a set with no
elements and only one way to choose a set with n elements, the remaining values
of
(
n
j

)
are determined by the following recurrence relation:

Theorem 3.4 For integers n and j, with 0 < j < n, the binomial coefficients
satisfy: (

n

j

)
=
(

n− 1
j

)
+
(

n− 1
j − 1

)
. (3.1)

Proof. We wish to choose a subset of j elements. Choose an element u of U .
Assume first that we do not want u in the subset. Then we must choose the j

elements from a set of n−1 elements; this can be done in
(
n−1

j

)
ways. On the other

hand, assume that we do want u in the subset. Then we must choose the other
j − 1 elements from the remaining n − 1 elements of U ; this can be done in

(
n−1
j−1

)
ways. Since u is either in our subset or not, the number of ways that we can choose
a subset of j elements is the sum of the number of subsets of j elements which have
u as a member and the number which do not—this is what Equation 3.1 states. 2

The binomial coefficient
(
n
j

)
is defined to be 0, if j < 0 or if j > n. With this

definition, the restrictions on j in Theorem 3.4 are unnecessary.
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n = 0            1

10            1        10        45      120      210      252      210      120        45        10           1     

 9            1          9        36        84      126      126        84        36          9          1 

8            1          8        28        56        70        56        28          8          1

7            1          7        21        35        35        21          7          1

6            1          6        15        20        15          6          1
5            1          5        10        10          5          1
4            1          4          6          4          1

3            1          3          3          1

2            1          2          1
1            1          1

j = 0          1          2          3          4          5          6          7          8          9          10

Figure 3.3: Pascal’s triangle.

Pascal’s Triangle

The relation 3.1, together with the knowledge that(
n

0

)
=
(

n

n

)
= 1 ,

determines completely the numbers
(
n
j

)
. We can use these relations to determine

the famous triangle of Pascal, which exhibits all these numbers in matrix form (see
Figure 3.3).

The nth row of this triangle has the entries
(
n
0

)
,
(
n
1

)
,. . . ,

(
n
n

)
. We know that the

first and last of these numbers are 1. The remaining numbers are determined by
the recurrence relation Equation 3.1; that is, the entry

(
n
j

)
for 0 < j < n in the

nth row of Pascal’s triangle is the sum of the entry immediately above and the one
immediately to its left in the (n− 1)st row. For example,

(
5
2

)
= 6 + 4 = 10.

This algorithm for constructing Pascal’s triangle can be used to write a computer
program to compute the binomial coefficients. You are asked to do this in Exercise 4.

While Pascal’s triangle provides a way to construct recursively the binomial
coefficients, it is also possible to give a formula for

(
n
j

)
.

Theorem 3.5 The binomial coefficients are given by the formula(
n

j

)
=

(n)j

j!
. (3.2)

Proof. Each subset of size j of a set of size n can be ordered in j! ways. Each of
these orderings is a j-permutation of the set of size n. The number of j-permutations
is (n)j , so the number of subsets of size j is

(n)j

j!
.

This completes the proof. 2
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The above formula can be rewritten in the form(
n

j

)
=

n!
j!(n− j)!

.

This immediately shows that (
n

j

)
=
(

n

n− j

)
.

When using Equation 3.2 in the calculation of
(
n
j

)
, if one alternates the multi-

plications and divisions, then all of the intermediate values in the calculation are
integers. Furthermore, none of these intermediate values exceed the final value.
(See Exercise 40.)

Another point that should be made concerning Equation 3.2 is that if it is used
to define the binomial coefficients, then it is no longer necessary to require n to be
a positive integer. The variable j must still be a non-negative integer under this
definition. This idea is useful when extending the Binomial Theorem to general
exponents. (The Binomial Theorem for non-negative integer exponents is given
below as Theorem 3.7.)

Poker Hands

Example 3.6 Poker players sometimes wonder why a four of a kind beats a full
house. A poker hand is a random subset of 5 elements from a deck of 52 cards.
A hand has four of a kind if it has four cards with the same value—for example,
four sixes or four kings. It is a full house if it has three of one value and two of a
second—for example, three twos and two queens. Let us see which hand is more
likely. How many hands have four of a kind? There are 13 ways that we can specify
the value for the four cards. For each of these, there are 48 possibilities for the fifth
card. Thus, the number of four-of-a-kind hands is 13 · 48 = 624. Since the total
number of possible hands is

(
52
5

)
= 2598960, the probability of a hand with four of

a kind is 624/2598960 = .00024.
Now consider the case of a full house; how many such hands are there? There

are 13 choices for the value which occurs three times; for each of these there are(
4
3

)
= 4 choices for the particular three cards of this value that are in the hand.

Having picked these three cards, there are 12 possibilities for the value which occurs
twice; for each of these there are

(
4
2

)
= 6 possibilities for the particular pair of this

value. Thus, the number of full houses is 13 · 4 · 12 · 6 = 3744, and the probability
of obtaining a hand with a full house is 3744/2598960 = .0014. Thus, while both
types of hands are unlikely, you are six times more likely to obtain a full house than
four of a kind. 2
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Figure 3.4: Tree diagram of three Bernoulli trials.

Bernoulli Trials

Our principal use of the binomial coefficients will occur in the study of one of the
important chance processes called Bernoulli trials.

Definition 3.5 A Bernoulli trials process is a sequence of n chance experiments
such that

1. Each experiment has two possible outcomes, which we may call success and
failure.

2. The probability p of success on each experiment is the same for each ex-
periment, and this probability is not affected by any knowledge of previous
outcomes. The probability q of failure is given by q = 1− p.

2

Example 3.7 The following are Bernoulli trials processes:

1. A coin is tossed ten times. The two possible outcomes are heads and tails.
The probability of heads on any one toss is 1/2.

2. An opinion poll is carried out by asking 1000 people, randomly chosen from
the population, if they favor the Equal Rights Amendment—the two outcomes
being yes and no. The probability p of a yes answer (i.e., a success) indicates
the proportion of people in the entire population that favor this amendment.

3. A gambler makes a sequence of 1-dollar bets, betting each time on black at
roulette at Las Vegas. Here a success is winning 1 dollar and a failure is losing



3.2. COMBINATIONS 97

1 dollar. Since in American roulette the gambler wins if the ball stops on one
of 18 out of 38 positions and loses otherwise, the probability of winning is
p = 18/38 = .474.

2

To analyze a Bernoulli trials process, we choose as our sample space a binary
tree and assign a probability distribution to the paths in this tree. Suppose, for
example, that we have three Bernoulli trials. The possible outcomes are indicated
in the tree diagram shown in Figure 3.4. We define X to be the random variable
which represents the outcome of the process, i.e., an ordered triple of S’s and F’s.
The probabilities assigned to the branches of the tree represent the probability for
each individual trial. Let the outcome of the ith trial be denoted by the random
variable Xi, with distribution function mi. Since we have assumed that outcomes
on any one trial do not affect those on another, we assign the same probabilities
at each level of the tree. An outcome ω for the entire experiment will be a path
through the tree. For example, ω3 represents the outcomes SFS. Our frequency
interpretation of probability would lead us to expect a fraction p of successes on
the first experiment; of these, a fraction q of failures on the second; and, of these, a
fraction p of successes on the third experiment. This suggests assigning probability
pqp to the outcome ω3. More generally, we assign a distribution function m(ω) for
paths ω by defining m(ω) to be the product of the branch probabilities along the
path ω. Thus, the probability that the three events S on the first trial, F on the
second trial, and S on the third trial occur is the product of the probabilities for
the individual events. We shall see in the next chapter that this means that the
events involved are independent in the sense that the knowledge of one event does
not affect our prediction for the occurrences of the other events.

Binomial Probabilities

We shall be particularly interested in the probability that in n Bernoulli trials there
are exactly j successes. We denote this probability by b(n, p, j). Let us calculate the
particular value b(3, p, 2) from our tree measure. We see that there are three paths
which have exactly two successes and one failure, namely ω2, ω3, and ω5. Each of
these paths has the same probability p2q. Thus b(3, p, 2) = 3p2q. Considering all
possible numbers of successes we have

b(3, p, 0) = q3 ,

b(3, p, 1) = 3pq2 ,

b(3, p, 2) = 3p2q ,

b(3, p, 3) = p3 .

We can, in the same manner, carry out a tree measure for n experiments and
determine b(n, p, j) for the general case of n Bernoulli trials.
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Theorem 3.6 Given n Bernoulli trials with probability p of success on each exper-
iment, the probability of exactly j successes is

b(n, p, j) =
(

n

j

)
pjqn−j

where q = 1− p.

Proof. We construct a tree measure as described above. We want to find the sum
of the probabilities for all paths which have exactly j successes and n − j failures.
Each such path is assigned a probability pjqn−j . How many such paths are there?
To specify a path, we have to pick, from the n possible trials, a subset of j to be
successes, with the remaining n− j outcomes being failures. We can do this in

(
n
j

)
ways. Thus the sum of the probabilities is

b(n, p, j) =
(

n

j

)
pjqn−j .

2

Example 3.8 A fair coin is tossed six times. What is the probability that exactly
three heads turn up? The answer is

b(6, .5, 3) =
(

6
3

)(
1
2

)3(1
2

)3

= 20 · 1
64

= .3125 .

2

Example 3.9 A die is rolled four times. What is the probability that we obtain
exactly one 6? We treat this as Bernoulli trials with success = “rolling a 6” and
failure = “rolling some number other than a 6.” Then p = 1/6, and the probability
of exactly one success in four trials is

b(4, 1/6, 1) =
(

4
1

)(
1
6

)1(5
6

)3

= .386 .

2

To compute binomial probabilities using the computer, multiply the function
choose(n, k) by pkqn−k. The program BinomialProbabilities prints out the bi-
nomial probabilities b(n, p, k) for k between kmin and kmax, and the sum of these
probabilities. We have run this program for n = 100, p = 1/2, kmin = 45, and
kmax = 55; the output is shown in Table 3.8. Note that the individual probabilities
are quite small. The probability of exactly 50 heads in 100 tosses of a coin is about
.08. Our intuition tells us that this is the most likely outcome, which is correct;
but, all the same, it is not a very likely outcome.
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k b(n, p, k)

45 .0485
46 .0580
47 .0666
48 .0735
49 .0780
50 .0796
51 .0780
52 .0735
53 .0666
54 .0580
55 .0485

Table 3.8: Binomial probabilities for n = 100, p = 1/2.

Binomial Distributions

Definition 3.6 Let n be a positive integer, and let p be a real number between 0
and 1. Let B be the random variable which counts the number of successes in a
Bernoulli trials process with parameters n and p. Then the distribution b(n, p, k)
of B is called the binomial distribution. 2

We can get a better idea about the binomial distribution by graphing this dis-
tribution for different values of n and p (see table 3.5). The plots in this figure
were generated using the program BinomialPlot.

We have run this program for p = .5 and p = .3. Note that even for p = .3 the
graphs are quite symmetric. We shall have an explanation for this in Chapter 9. We
also note that the highest probability occurs around the value np, but that these
highest probabilities get smaller as n increases. We shall see in Chapter 6 that np

is the mean or expected value of the binomial distribution b(n, p, k).
The following example gives a nice way to see the binomial distribution, when

p = 1/2.

Example 3.10 A Galton board is a board in which a large number of BB-shots are
dropped from a chute at the top of the board and deflected off a number of pins on
their way down to the bottom of the board. The final position of each slot is the
result of a number of random deflections either to the left or the right. We have
written a program GaltonBoard to simulate this experiment.

We have run the program for the case of 20 rows of pins and 10,000 shots being
dropped. We show the result of this simulation in Figure 3.6.

Note that if we write 0 every time the shot is deflected to the left, and 1 every
time it is deflected to the right, then the path of the shot can be described by a
sequence of 0’s and 1’s of length n, just as for the n-fold coin toss.

The distribution shown in Figure 3.6 is an example of an empirical distribution,
in the sense that it comes about by means of a sequence of experiments. As expected,
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Figure 3.5: Binomial distributions.
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Figure 3.6: Simulation of the Galton board.

this empirical distribution resembles the corresponding binomial distribution with
parameters n = 20 and p = 1/2. 2

Hypothesis Testing

Example 3.11 Suppose that ordinary aspirin has been found effective against
headaches 60 percent of the time, and that a drug company claims that its new
aspirin with a special headache additive is more effective. We can test this claim
as follows: we call their claim the alternate hypothesis, and its negation, that the
additive has no appreciable effect, the null hypothesis. Thus the null hypothesis is
that p = .6, and the alternate hypothesis is that p > .6, where p is the probability
that the new aspirin is effective.

We give the aspirin to n people to take when they have a headache. We want to
find a number m, called the critical value for our experiment, such that we reject
the null hypothesis if at least m people are cured, and otherwise we accept it. How
should we determine this critical value?

First note that we can make two kinds of errors. The first, often called a type 1
error in statistics, is to reject the null hypothesis when in fact it is true. The second,
called a type 2 error, is to accept the null hypothesis when it is false. To determine
the probability of both these types of errors we introduce a function α(p), defined
to be the probability that we reject the null hypothesis, where this probability is
calculated under the assumption that the null hypothesis is true. In the present
case, we have

α(p) =
∑

m≤k≤n

b(n, p, k) .
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Note that α(.6) is the probability of a type 1 error, since this is the probability
of a high number of successes for an ineffective additive. So for a given n we want
to choose m so as to make α(.6) quite small, to reduce the likelihood of a type 1
error. But as m increases above the most probable value np = .6n, α(.6), being
the upper tail of a binomial distribution, approaches 0. Thus increasing m makes
a type 1 error less likely.

Now suppose that the additive really is effective, so that p is appreciably greater
than .6; say p = .8. (This alternative value of p is chosen arbitrarily; the following
calculations depend on this choice.) Then choosing m well below np = .8n will
increase α(.8), since now α(.8) is all but the lower tail of a binomial distribution.
Indeed, if we put β(.8) = 1− α(.8), then β(.8) gives us the probability of a type 2
error, and so decreasing m makes a type 2 error less likely.

The manufacturer would like to guard against a type 2 error, since if such an
error is made, then the test does not show that the new drug is better, when in
fact it is. If the alternative value of p is chosen closer to the value of p given in
the null hypothesis (in this case p = .6), then for a given test population, the
value of β will increase. So, if the manufacturer’s statistician chooses an alternative
value for p which is close to the value in the null hypothesis, then it will be an
expensive proposition (i.e., the test population will have to be large) to reject the
null hypothesis with a small value of β.

What we hope to do then, for a given test population n, is to choose a value
of m, if possible, which makes both these probabilities small. If we make a type 1
error we end up buying a lot of essentially ordinary aspirin at an inflated price; a
type 2 error means we miss a bargain on a superior medication. Let us say that
we want our critical number m to make each of these undesirable cases less than 5
percent probable.

We write a program PowerCurve to plot, for n = 100 and selected values of m,
the function α(p), for p ranging from .4 to 1. The result is shown in Figure 3.7. We
include in our graph a box (in dotted lines) from .6 to .8, with bottom and top at
heights .05 and .95. Then a value for m satisfies our requirements if and only if the
graph of α enters the box from the bottom, and leaves from the top (why?—which
is the type 1 and which is the type 2 criterion?). As m increases, the graph of α

moves to the right. A few experiments have shown us that m = 69 is the smallest
value for m that thwarts a type 1 error, while m = 73 is the largest which thwarts a
type 2. So we may choose our critical value between 69 and 73. If we’re more intent
on avoiding a type 1 error we favor 73, and similarly we favor 69 if we regard a
type 2 error as worse. Of course, the drug company may not be happy with having
as much as a 5 percent chance of an error. They might insist on having a 1 percent
chance of an error. For this we would have to increase the number n of trials (see
Exercise 28). 2

Binomial Expansion

We next remind the reader of an application of the binomial coefficients to algebra.
This is the binomial expansion, from which we get the term binomial coefficient.
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Figure 3.7: The power curve.

Theorem 3.7 (Binomial Theorem) The quantity (a + b)n can be expressed in
the form

(a + b)n =
n∑

j=0

(
n

j

)
ajbn−j .

Proof. To see that this expansion is correct, write

(a + b)n = (a + b)(a + b) · · · (a + b) .

When we multiply this out we will have a sum of terms each of which results from
a choice of an a or b for each of n factors. When we choose j a’s and (n − j) b’s,
we obtain a term of the form ajbn−j . To determine such a term, we have to specify
j of the n terms in the product from which we choose the a. This can be done in(
n
j

)
ways. Thus, collecting these terms in the sum contributes a term

(
n
j

)
ajbn−j . 2

For example, we have

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3 .

We see here that the coefficients of successive powers do indeed yield Pascal’s tri-
angle.

Corollary 3.1 The sum of the elements in the nth row of Pascal’s triangle is 2n.
If the elements in the nth row of Pascal’s triangle are added with alternating signs,
the sum is 0.
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Proof. The first statement in the corollary follows from the fact that

2n = (1 + 1)n =
(

n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · ·+

(
n

n

)
,

and the second from the fact that

0 = (1− 1)n =
(

n

0

)
−
(

n

1

)
+
(

n

2

)
− · · ·+ (−1)n

(
n

n

)
.

2

The first statement of the corollary tells us that the number of subsets of a set
of n elements is 2n. We shall use the second statement in our next application of
the binomial theorem.

We have seen that, when A and B are any two events (cf. Section 1.2),

P (A ∪B) = P (A) + P (B)− P (A ∩B).

We now extend this theorem to a more general version, which will enable us to find
the probability that at least one of a number of events occurs.

Inclusion-Exclusion Principle

Theorem 3.8 Let P be a probability distribution on a sample space Ω, and let
{A1, A2, . . . , An} be a finite set of events. Then

P (A1 ∪A2 ∪ · · · ∪An) =
n∑

i=1

P (Ai) −
∑

1≤i<j≤n

P (Ai ∩Aj)

+
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak)− · · · . (3.3)

That is, to find the probability that at least one of n events Ai occurs, first add
the probability of each event, then subtract the probabilities of all possible two-way
intersections, add the probability of all three-way intersections, and so forth.

Proof. If the outcome ω occurs in at least one of the events Ai, its probability is
added exactly once by the left side of Equation 3.3. We must show that it is added
exactly once by the right side of Equation 3.3. Assume that ω is in exactly k of the
sets. Then its probability is added k times in the first term, subtracted

(
k
2

)
times in

the second, added
(
k
3

)
times in the third term, and so forth. Thus, the total number

of times that it is added is(
k

1

)
−
(

k

2

)
+
(

k

3

)
− · · · (−1)k−1

(
k

k

)
.

But

0 = (1− 1)k =
k∑

j=0

(
k

j

)
(−1)j =

(
k

0

)
−

k∑
j=1

(
k

j

)
(−1)j−1 .
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Hence,

1 =
(

k

0

)
=

k∑
j=1

(
k

j

)
(−1)j−1 .

If the outcome ω is not in any of the events Ai, then it is not counted on either side
of the equation. 2

Hat Check Problem

Example 3.12 We return to the hat check problem discussed in Section 3.1, that
is, the problem of finding the probability that a random permutation contains at
least one fixed point. Recall that a permutation is a one-to-one map of a set
A = {a1, a2, . . . , an} onto itself. Let Ai be the event that the ith element ai remains
fixed under this map. If we require that ai is fixed, then the map of the remaining
n−1 elements provides an arbitrary permutation of (n−1) objects. Since there are
(n − 1)! such permutations, P (Ai) = (n − 1)!/n! = 1/n. Since there are n choices
for ai, the first term of Equation 3.3 is 1. In the same way, to have a particular
pair (ai, aj) fixed, we can choose any permutation of the remaining n− 2 elements;
there are (n− 2)! such choices and thus

P (Ai ∩Aj) =
(n− 2)!

n!
=

1
n(n− 1)

.

The number of terms of this form in the right side of Equation 3.3 is(
n

2

)
=

n(n− 1)
2!

.

Hence, the second term of Equation 3.3 is

−n(n− 1)
2!

· 1
n(n− 1)

= − 1
2!

.

Similarly, for any specific three events Ai, Aj , Ak,

P (Ai ∩Aj ∩Ak) =
(n− 3)!

n!
=

1
n(n− 1)(n− 2)

,

and the number of such terms is(
n

3

)
=

n(n− 1)(n− 2)
3!

,

making the third term of Equation 3.3 equal to 1/3!. Continuing in this way, we
obtain

P (at least one fixed point) = 1− 1
2!

+
1
3!
− · · · (−1)n−1 1

n!
and

P (no fixed point) =
1
2!
− 1

3!
+ · · · (−1)n 1

n!
.
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Probability that no one
n gets his own hat back
3 .333333
4 .375
5 .366667
6 .368056
7 .367857
8 .367882
9 .367879

10 .367879

Table 3.9: Hat check problem.

From calculus we learn that

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + · · ·+ 1
n!

xn + · · · .

Thus, if x = −1, we have

e−1 =
1
2!
− 1

3!
+ · · ·+ (−1)n

n!
+ · · ·

= .3678794 .

Therefore, the probability that there is no fixed point, i.e., that none of the n people
gets his own hat back, is equal to the sum of the first n terms in the expression for
e−1. This series converges very fast. Calculating the partial sums for n = 3 to 10
gives the data in Table 3.9.

After n = 9 the probabilities are essentially the same to six significant figures.
Interestingly, the probability of no fixed point alternately increases and decreases
as n increases. Finally, we note that our exact results are in good agreement with
our simulations reported in the previous section. 2

Choosing a Sample Space

We now have some of the tools needed to accurately describe sample spaces and
to assign probability functions to those sample spaces. Nevertheless, in some cases,
the description and assignment process is somewhat arbitrary. Of course, it is to
be hoped that the description of the sample space and the subsequent assignment
of a probability function will yield a model which accurately predicts what would
happen if the experiment were actually carried out. As the following examples show,
there are situations in which “reasonable” descriptions of the sample space do not
produce a model which fits the data.

In Feller’s book,14 a pair of models is given which describe arrangements of
certain kinds of elementary particles, such as photons and protons. It turns out that
experiments have shown that certain types of elementary particles exhibit behavior

14W. Feller, Introduction to Probability Theory and Its Applications vol. 1, 3rd ed. (New York:
John Wiley and Sons, 1968), p. 41
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which is accurately described by one model, called “Bose-Einstein statistics,” while
other types of elementary particles can be modelled using “Fermi-Dirac statistics.”
Feller says:

We have here an instructive example of the impossibility of selecting or
justifying probability models by a priori arguments. In fact, no pure
reasoning could tell that photons and protons would not obey the same
probability laws.

We now give some examples of this description and assignment process.

Example 3.13 In the quantum mechanical model of the helium atom, various
parameters can be used to classify the energy states of the atom. In the triplet
spin state (S = 1) with orbital angular momentum 1 (L = 1), there are three
possibilities, 0, 1, or 2, for the total angular momentum (J). (It is not assumed that
the reader knows what any of this means; in fact, the example is more illustrative
if the reader does not know anything about quantum mechanics.) We would like
to assign probabilities to the three possibilities for J . The reader is undoubtedly
resisting the idea of assigning the probability of 1/3 to each of these outcomes. She
should now ask herself why she is resisting this assignment. The answer is probably
because she does not have any “intuition” (i.e., experience) about the way in which
helium atoms behave. In fact, in this example, the probabilities 1/9, 3/9, and
5/9 are assigned by the theory. The theory gives these assignments because these
frequencies were observed in experiments and further parameters were developed in
the theory to allow these frequencies to be predicted. 2

Example 3.14 Suppose two pennies are flipped once each. There are several “rea-
sonable” ways to describe the sample space. One way is to count the number of
heads in the outcome; in this case, the sample space can be written {0, 1, 2}. An-
other description of the sample space is the set of all ordered pairs of H’s and T ’s,
i.e.,

{(H,H), (H,T ), (T,H), (T, T )}.

Both of these descriptions are accurate ones, but it is easy to see that (at most) one
of these, if assigned a constant probability function, can claim to accurately model
reality. In this case, as opposed to the preceding example, the reader will probably
say that the second description, with each outcome being assigned a probability of
1/4, is the “right” description. This conviction is due to experience; there is no
proof that this is the way reality works. 2

The reader is also referred to Exercise 26 for another example of this process.

Historical Remarks

The binomial coefficients have a long and colorful history leading up to Pascal’s
Treatise on the Arithmetical Triangle,15 where Pascal developed many important

15B. Pascal, Traité du Triangle Arithmétique (Paris: Desprez, 1665).
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1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
1 3 6 10 15 21 28 36
1 4 10 20 35 56 84
1 5 15 35 70 126
1 6 21 56 126
1 7 28 84
1 8 36
1 9
1

Table 3.10: Pascal’s triangle.

natural numbers 1 2 3 4 5 6 7 8 9
triangular numbers 1 3 6 10 15 21 28 36 45
tetrahedral numbers 1 4 10 20 35 56 84 120 165

Table 3.11: Figurate numbers.

properties of these numbers. This history is set forth in the book Pascal’s Arith-
metical Triangle by A. W. F. Edwards.16 Pascal wrote his triangle in the form
shown in Table 3.10.

Edwards traces three different ways that the binomial coefficients arose. He
refers to these as the figurate numbers, the combinatorial numbers, and the binomial
numbers. They are all names for the same thing (which we have called binomial
coefficients) but that they are all the same was not appreciated until the sixteenth
century.

The figurate numbers date back to the Pythagorean interest in number pat-
terns around 540 BC. The Pythagoreans considered, for example, triangular patterns
shown in Figure 3.8. The sequence of numbers

1, 3, 6, 10, . . .

obtained as the number of points in each triangle are called triangular numbers.
From the triangles it is clear that the nth triangular number is simply the sum of
the first n integers. The tetrahedral numbers are the sums of the triangular numbers
and were obtained by the Greek mathematicians Theon and Nicomachus at the
beginning of the second century BC. The tetrahedral number 10, for example, has
the geometric representation shown in Figure 3.9. The first three types of figurate
numbers can be represented in tabular form as shown in Table 3.11.

These numbers provide the first four rows of Pascal’s triangle, but the table was
not to be completed in the West until the sixteenth century.

In the East, Hindu mathematicians began to encounter the binomial coefficients
in combinatorial problems. Bhaskara in his Lilavati of 1150 gave a rule to find the

16A. W. F. Edwards, Pascal’s Arithmetical Triangle (London: Griffin, 1987).
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1 3 6 10

Figure 3.8: Pythagorean triangular patterns.

Figure 3.9: Geometric representation of the tetrahedral number 10.
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11
12 22
13 23 33
14 24 34 44
15 25 35 45 55
16 26 36 46 56 66

Table 3.12: Outcomes for the roll of two dice.

number of medicinal preparations using 1, 2, 3, 4, 5, or 6 possible ingredients.17 His
rule is equivalent to our formula (

n

r

)
=

(n)r

r!
.

The binomial numbers as coefficients of (a+ b)n appeared in the works of math-
ematicians in China around 1100. There are references about this time to “the
tabulation system for unlocking binomial coefficients.” The triangle to provide the
coefficients up to the eighth power is given by Chu Shih-chieh in a book written
around 1303 (see Figure 3.10).18 The original manuscript of Chu’s book has been
lost, but copies have survived. Edwards notes that there is an error in this copy of
Chu’s triangle. Can you find it? (Hint : Two numbers which should be equal are
not.) Other copies do not show this error.

The first appearance of Pascal’s triangle in the West seems to have come from
calculations of Tartaglia in calculating the number of possible ways that n dice
might turn up.19 For one die the answer is clearly 6. For two dice the possibilities
may be displayed as shown in Table 3.12.

Displaying them this way suggests the sixth triangular number 1 + 2 + 3 + 4 +
5 + 6 = 21 for the throw of 2 dice. Tartaglia “on the first day of Lent, 1523, in
Verona, having thought about the problem all night,”20 realized that the extension
of the figurate table gave the answers for n dice. The problem had suggested itself
to Tartaglia from watching people casting their own horoscopes by means of a Book
of Fortune, selecting verses by a process which included noting the numbers on the
faces of three dice. The 56 ways that three dice can fall were set out on each page.
The way the numbers were written in the book did not suggest the connection with
figurate numbers, but a method of enumeration similar to the one we used for 2
dice does. Tartaglia’s table was not published until 1556.

A table for the binomial coefficients was published in 1554 by the German mathe-
matician Stifel.21 Pascal’s triangle appears also in Cardano’s Opus novum of 1570.22

17ibid., p. 27.
18J. Needham, Science and Civilization in China, vol. 3 (New York: Cambridge University

Press, 1959), p. 135.
19N. Tartaglia, General Trattato di Numeri et Misure (Vinegia, 1556).
20Quoted in Edwards, op. cit., p. 37.
21M. Stifel, Arithmetica Integra (Norimburgae, 1544).
22G. Cardano, Opus Novum de Proportionibus Numerorum (Basilea, 1570).
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Figure 3.10: Chu Shih-chieh’s triangle. [From J. Needham, Science and Civilization
in China, vol. 3 (New York: Cambridge University Press, 1959), p. 135. Reprinted
with permission.]
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Cardano was interested in the problem of finding the number of ways to choose r

objects out of n. Thus by the time of Pascal’s work, his triangle had appeared as
a result of looking at the figurate numbers, the combinatorial numbers, and the
binomial numbers, and the fact that all three were the same was presumably pretty
well understood.

Pascal’s interest in the binomial numbers came from his letters with Fermat
concerning a problem known as the problem of points. This problem, and the
correspondence between Pascal and Fermat, were discussed in Chapter 1. The
reader will recall that this problem can be described as follows: Two players A and
B are playing a sequence of games and the first player to win n games wins the
match. It is desired to find the probability that A wins the match at a time when
A has won a games and B has won b games. (See Exercises 4.1.40-4.1.42.)

Pascal solved the problem by backward induction, much the way we would do
today in writing a computer program for its solution. He referred to the combina-
torial method of Fermat which proceeds as follows: If A needs c games and B needs
d games to win, we require that the players continue to play until they have played
c + d− 1 games. The winner in this extended series will be the same as the winner
in the original series. The probability that A wins in the extended series and hence
in the original series is

c+d−1∑
r=c

1
2c+d−1

(
c + d− 1

r

)
.

Even at the time of the letters Pascal seemed to understand this formula.
Suppose that the first player to win n games wins the match, and suppose that

each player has put up a stake of x. Pascal studied the value of winning a particular
game. By this he meant the increase in the expected winnings of the winner of the
particular game under consideration. He showed that the value of the first game is

1 · 3 · 5 · . . . · (2n− 1)
2 · 4 · 6 · . . . · (2n)

x .

His proof of this seems to use Fermat’s formula and the fact that the above ratio of
products of odd to products of even numbers is equal to the probability of exactly
n heads in 2n tosses of a coin. (See Exercise 39.)

Pascal presented Fermat with the table shown in Table 3.13. He states:

You will see as always, that the value of the first game is equal to that
of the second which is easily shown by combinations. You will see, in
the same way, that the numbers in the first line are always increasing;
so also are those in the second; and those in the third. But those in the
fourth line are decreasing, and those in the fifth, etc. This seems odd.23

The student can pursue this question further using the computer and Pascal’s
backward iteration method for computing the expected payoff at any point in the
series.

23F. N. David, op. cit., p. 235.
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if each one staken 256 in
From my opponent’s 256 6 5 4 3 2 1
positions I get, for the games games games games games games

1st game 63 70 80 96 128 256
2nd game 63 70 80 96 128
3rd game 56 60 64 64
4th game 42 40 32
5th game 24 16
6th game 8

Table 3.13: Pascal’s solution for the problem of points.

In his treatise, Pascal gave a formal proof of Fermat’s combinatorial formula as
well as proofs of many other basic properties of binomial numbers. Many of his
proofs involved induction and represent some of the first proofs by this method.
His book brought together all the different aspects of the numbers in the Pascal
triangle as known in 1654, and, as Edwards states, “That the Arithmetical Triangle
should bear Pascal’s name cannot be disputed.”24

The first serious study of the binomial distribution was undertaken by James
Bernoulli in his Ars Conjectandi published in 1713.25 We shall return to this work
in the historical remarks in Chapter 8.

Exercises

1 Compute the following:

(a)
(
6
3

)
(b) b(5, .2, 4)

(c)
(
7
2

)
(d)

(
26
26

)
(e) b(4, .2, 3)

(f)
(
6
2

)
(g)

(
10
9

)
(h) b(8, .3, 5)

2 In how many ways can we choose five people from a group of ten to form a
committee?

3 How many seven-element subsets are there in a set of nine elements?

4 Using the relation Equation 3.1 write a program to compute Pascal’s triangle,
putting the results in a matrix. Have your program print the triangle for
n = 10.

24A. W. F. Edwards, op. cit., p. ix.
25J. Bernoulli, Ars Conjectandi (Basil: Thurnisiorum, 1713).
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5 Use the program BinomialProbabilities to find the probability that, in 100
tosses of a fair coin, the number of heads that turns up lies between 35 and
65, between 40 and 60, and between 45 and 55.

6 Charles claims that he can distinguish between beer and ale 75 percent of the
time. Ruth bets that he cannot and, in fact, just guesses. To settle this, a bet
is made: Charles is to be given ten small glasses, each having been filled with
beer or ale, chosen by tossing a fair coin. He wins the bet if he gets seven or
more correct. Find the probability that Charles wins if he has the ability that
he claims. Find the probability that Ruth wins if Charles is guessing.

7 Show that

b(n, p, j) =
p

q

(
n− j + 1

j

)
b(n, p, j − 1) ,

for j ≥ 1. Use this fact to determine the value or values of j which give
b(n, p, j) its greatest value. Hint : Consider the successive ratios as j increases.

8 A die is rolled 30 times. What is the probability that a 6 turns up exactly 5
times? What is the most probable number of times that a 6 will turn up?

9 Find integers n and r such that the following equation is true:(
13
5

)
+ 2
(

13
6

)
+
(

13
7

)
=
(

n

r

)
.

10 In a ten-question true-false exam, find the probability that a student gets a
grade of 70 percent or better by guessing. Answer the same question if the
test has 30 questions, and if the test has 50 questions.

11 A restaurant offers apple and blueberry pies and stocks an equal number of
each kind of pie. Each day ten customers request pie. They choose, with
equal probabilities, one of the two kinds of pie. How many pieces of each kind
of pie should the owner provide so that the probability is about .95 that each
customer gets the pie of his or her own choice?

12 A poker hand is a set of 5 cards randomly chosen from a deck of 52 cards.
Find the probability of a

(a) royal flush (ten, jack, queen, king, ace in a single suit).

(b) straight flush (five in a sequence in a single suit, but not a royal flush).

(c) four of a kind (four cards of the same face value).

(d) full house (one pair and one triple, each of the same face value).

(e) flush (five cards in a single suit but not a straight or royal flush).

(f) straight (five cards in a sequence, not all the same suit). (Note that in
straights, an ace counts high or low.)

13 If a set has 2n elements, show that it has more subsets with n elements than
with any other number of elements.
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14 Let b(2n, .5, n) be the probability that in 2n tosses of a fair coin exactly n heads
turn up. Using Stirling’s formula (Theorem 3.3), show that b(2n, .5, n) ∼
1/
√

πn. Use the program BinomialProbabilities to compare this with the
exact value for n = 10 to 25.

15 A baseball player, Smith, has a batting average of .300 and in a typical game
comes to bat three times. Assume that Smith’s hits in a game can be consid-
ered to be a Bernoulli trials process with probability .3 for success. Find the
probability that Smith gets 0, 1, 2, and 3 hits.

16 The Siwash University football team plays eight games in a season, winning
three, losing three, and ending two in a tie. Show that the number of ways
that this can happen is (

8
3

)(
5
3

)
=

8!
3! 3! 2!

.

17 Using the technique of Exercise 16, show that the number of ways that one
can put n different objects into three boxes with a in the first, b in the second,
and c in the third is n!/(a! b! c!).

18 Baumgartner, Prosser, and Crowell are grading a calculus exam. There is a
true-false question with ten parts. Baumgartner notices that one student has
only two out of the ten correct and remarks, “The student was not even bright
enough to have flipped a coin to determine his answers.” “Not so clear,” says
Prosser. “With 340 students I bet that if they all flipped coins to determine
their answers there would be at least one exam with two or fewer answers
correct.” Crowell says, “I’m with Prosser. In fact, I bet that we should expect
at least one exam in which no answer is correct if everyone is just guessing.”
Who is right in all of this?

19 A gin hand consists of 10 cards from a deck of 52 cards. Find the probability
that a gin hand has

(a) all 10 cards of the same suit.

(b) exactly 4 cards in one suit and 3 in two other suits.

(c) a 4, 3, 2, 1, distribution of suits.

20 A six-card hand is dealt from an ordinary deck of cards. Find the probability
that:

(a) All six cards are hearts.

(b) There are three aces, two kings, and one queen.

(c) There are three cards of one suit and three of another suit.

21 A lady wishes to color her fingernails on one hand using at most two of the
colors red, yellow, and blue. How many ways can she do this?
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22 How many ways can six indistinguishable letters be put in three mail boxes?
Hint : One representation of this is given by a sequence |LL|L|LLL| where the
|’s represent the partitions for the boxes and the L’s the letters. Any possible
way can be so described. Note that we need two bars at the ends and the
remaining two bars and the six L’s can be put in any order.

23 Using the method for the hint in Exercise 22, show that r indistinguishable
objects can be put in n boxes in(

n + r − 1
n− 1

)
=
(

n + r − 1
r

)
different ways.

24 A travel bureau estimates that when 20 tourists go to a resort with ten hotels
they distribute themselves as if the bureau were putting 20 indistinguishable
objects into ten distinguishable boxes. Assuming this model is correct, find
the probability that no hotel is left vacant when the first group of 20 tourists
arrives.

25 An elevator takes on six passengers and stops at ten floors. We can assign
two different equiprobable measures for the ways that the passengers are dis-
charged: (a) we consider the passengers to be distinguishable or (b) we con-
sider them to be indistinguishable (see Exercise 23 for this case). For each
case, calculate the probability that all the passengers get off at different floors.

26 You are playing heads or tails with Prosser but you suspect that his coin is
unfair. Von Neumann suggested that you proceed as follows: Toss Prosser’s
coin twice. If the outcome is HT call the result win. if it is TH call the result
lose. If it is TT or HH ignore the outcome and toss Prosser’s coin twice again.
Keep going until you get either an HT or a TH and call the result win or lose
in a single play. Repeat this procedure for each play. Assume that Prosser’s
coin turns up heads with probability p.

(a) Find the probability of HT, TH, HH, TT with two tosses of Prosser’s
coin.

(b) Using part (a), show that the probability of a win on any one play is 1/2,
no matter what p is.

27 John claims that he has extrasensory powers and can tell which of two symbols
is on a card turned face down (see Example 3.11). To test his ability he is
asked to do this for a sequence of trials. Let the null hypothesis be that he is
just guessing, so that the probability is 1/2 of his getting it right each time,
and let the alternative hypothesis be that he can name the symbol correctly
more than half the time. Devise a test with the property that the probability
of a type 1 error is less than .05 and the probability of a type 2 error is less
than .05 if John can name the symbol correctly 75 percent of the time.
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28 In Example 3.11 assume the alternative hypothesis is that p = .8 and that it
is desired to have the probability of each type of error less than .01. Use the
program PowerCurve to determine values of n and m that will achieve this.
Choose n as small as possible.

29 A drug is assumed to be effective with an unknown probability p. To estimate
p the drug is given to n patients. It is found to be effective for m patients.
The method of maximum likelihood for estimating p states that we should
choose the value for p that gives the highest probability of getting what we
got on the experiment. Assuming that the experiment can be considered as a
Bernoulli trials process with probability p for success, show that the maximum
likelihood estimate for p is the proportion m/n of successes.

30 Recall that in the World Series the first team to win four games wins the
series. The series can go at most seven games. Assume that the Red Sox
and the Mets are playing the series. Assume that the Mets win each game
with probability p. Fermat observed that even though the series might not go
seven games, the probability that the Mets win the series is the same as the
probability that they win four or more game in a series that was forced to go
seven games no matter who wins the individual games.

(a) Using the program PowerCurve of Example 3.11 find the probability
that the Mets win the series for the cases p = .5, p = .6, p = .7.

(b) Assume that the Mets have probability .6 of winning each game. Use
the program PowerCurve to find a value of n so that, if the series goes
to the first team to win more than half the games, the Mets will have a
95 percent chance of winning the series. Choose n as small as possible.

31 Each of the four engines on an airplane functions correctly on a given flight
with probability .99, and the engines function independently of each other.
Assume that the plane can make a safe landing if at least two of its engines
are functioning correctly. What is the probability that the engines will allow
for a safe landing?

32 A small boy is lost coming down Mount Washington. The leader of the search
team estimates that there is a probability p that he came down on the east
side and a probability 1 − p that he came down on the west side. He has n

people in his search team who will search independently and, if the boy is
on the side being searched, each member will find the boy with probability
u. Determine how he should divide the n people into two groups to search
the two sides of the mountain so that he will have the highest probability of
finding the boy. How does this depend on u?

*33 2n balls are chosen at random from a total of 2n red balls and 2n blue balls.
Find a combinatorial expression for the probability that the chosen balls are
equally divided in color. Use Stirling’s formula to estimate this probability.
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Using BinomialProbabilities, compare the exact value with Stirling’s ap-
proximation for n = 20.

34 Assume that every time you buy a box of Wheaties, you receive one of the
pictures of the n players on the New York Yankees. Over a period of time,
you buy m ≥ n boxes of Wheaties.

(a) Use Theorem 3.8 to show that the probability that you get all n pictures
is

1 −
(

n

1

)(
n− 1

n

)m

+
(

n

2

)(
n− 2

n

)m

− · · ·

+ (−1)n−1

(
n

n− 1

)(
1
n

)m

.

Hint : Let Ek be the event that you do not get the kth player’s picture.

(b) Write a computer program to compute this probability. Use this program
to find, for given n, the smallest value of m which will give probability
≥ .5 of getting all n pictures. Consider n = 50, 100, and 150 and show
that m = n log n + n log 2 is a good estimate for the number of boxes
needed. (For a derivation of this estimate, see Feller.26)

*35 Prove the following binomial identity(
2n

n

)
=

n∑
j=0

(
n

j

)2

.

Hint : Consider an urn with n red balls and n blue balls inside. Show that
each side of the equation equals the number of ways to choose n balls from
the urn.

36 Let j and n be positive integers, with j ≤ n. An experiment consists of
choosing, at random, a j-tuple of positive integers whose sum is at most n.

(a) Find the size of the sample space. Hint : Consider n indistinguishable
balls placed in a row. Place j markers between consecutive pairs of balls,
with no two markers between the same pair of balls. (We also allow one
of the n markers to be placed at the end of the row of balls.) Show that
there is a 1-1 correspondence between the set of possible positions for
the markers and the set of j-tuples whose size we are trying to count.

(b) Find the probability that the j-tuple selected contains at least one 1.

37 Let n (mod m) denote the remainder when the integer n is divided by the
integer m. Write a computer program to compute the numbers

(
n
j

)
(mod m)

where
(
n
j

)
is a binomial coefficient and m is an integer. You can do this by

using the recursion relations for generating binomial coefficients, doing all the
26W. Feller, Introduction to Probability Theory and its Applications, vol. I, 3rd ed. (New York:

John Wiley & Sons, 1968), p. 106.



3.2. COMBINATIONS 119

arithmetic using the basic function mod(n, m). Try to write your program to
make as large a table as possible. Run your program for the cases m = 2 to 7.
Do you see any patterns? In particular, for the case m = 2 and n a power
of 2, verify that all the entries in the (n− 1)st row are 1. (The corresponding
binomial numbers are odd.) Use your pictures to explain why this is true.

38 Lucas27 proved the following general result relating to Exercise 37. If p is
any prime number, then

(
n
j

)
(mod p) can be found as follows: Expand n

and j in base p as n = s0 + s1p + s2p
2 + · · · + skpk and j = r0 + r1p +

r2p
2 + · · ·+ rkpk, respectively. (Here k is chosen large enough to represent all

numbers from 0 to n in base p using k digits.) Let s = (s0, s1, s2, . . . , sk) and
r = (r0, r1, r2, . . . , rk). Then(

n

j

)
(mod p) =

k∏
i=0

(
si

ri

)
(mod p) .

For example, if p = 7, n = 12, and j = 9, then

12 = 5 · 70 + 1 · 71 ,

9 = 2 · 70 + 1 · 71 ,

so that

s = (5, 1) ,

r = (2, 1) ,

and this result states that(
12
9

)
(mod p) =

(
5
2

)(
1
1

)
(mod 7) .

Since
(
12
9

)
= 220 = 3 (mod 7), and

(
5
2

)
= 10 = 3 (mod 7), we see that the

result is correct for this example.

Show that this result implies that, for p = 2, the (pk−1)st row of your triangle
in Exercise 37 has no zeros.

39 Prove that the probability of exactly n heads in 2n tosses of a fair coin is
given by the product of the odd numbers up to 2n− 1 divided by the product
of the even numbers up to 2n.

40 Let n be a positive integer, and assume that j is a positive integer not exceed-
ing n/2. Show that in Theorem 3.5, if one alternates the multiplications and
divisions, then all of the intermediate values in the calculation are integers.
Show also that none of these intermediate values exceed the final value.

27E. Lucas, “Théorie des Functions Numériques Simplement Periodiques,” American J. Math.,
vol. 1 (1878), pp. 184-240, 289-321.
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3.3 Card Shuffling

Much of this section is based upon an article by Brad Mann,28 which is an exposition
of an article by David Bayer and Persi Diaconis.29

Riffle Shuffles

Given a deck of n cards, how many times must we shuffle it to make it “random”?
Of course, the answer depends upon the method of shuffling which is used and what
we mean by “random.” We shall begin the study of this question by considering a
standard model for the riffle shuffle.

We begin with a deck of n cards, which we will assume are labelled in increasing
order with the integers from 1 to n. A riffle shuffle consists of a cut of the deck into
two stacks and an interleaving of the two stacks. For example, if n = 6, the initial
ordering is (1, 2, 3, 4, 5, 6), and a cut might occur between cards 2 and 3. This gives
rise to two stacks, namely (1, 2) and (3, 4, 5, 6). These are interleaved to form a
new ordering of the deck. For example, these two stacks might form the ordering
(1, 3, 4, 2, 5, 6). In order to discuss such shuffles, we need to assign a probability
distribution to the set of all possible shuffles. There are several reasonable ways in
which this can be done. We will give several different assignment strategies, and
show that they are equivalent. (This does not mean that this assignment is the
only reasonable one.) First, we assign the binomial probability b(n, 1/2, k) to the
event that the cut occurs after the kth card. Next, we assume that all possible
interleavings, given a cut, are equally likely. Thus, to complete the assignment
of probabilities, we need to determine the number of possible interleavings of two
stacks of cards, with k and n− k cards, respectively.

We begin by writing the second stack in a line, with spaces in between each
pair of consecutive cards, and with spaces at the beginning and end (so there are
n − k + 1 spaces). We choose, with replacement, k of these spaces, and place the
cards from the first stack in the chosen spaces. This can be done in(

n

k

)
ways. Thus, the probability of a given interleaving should be

1(
n
k

) .

Next, we note that if the new ordering is not the identity ordering, it is the
result of a unique cut-interleaving pair. If the new ordering is the identity, it is the
result of any one of n + 1 cut-interleaving pairs.

We define a rising sequence in an ordering to be a maximal subsequence of
consecutive integers in increasing order. For example, in the ordering

(2, 3, 5, 1, 4, 7, 6) ,

28B. Mann, “How Many Times Should You Shuffle a Deck of Cards?”, UMAP Journal , vol. 15,
no. 4 (1994), pp. 303–331.

29D. Bayer and P. Diaconis, “Trailing the Dovetail Shuffle to its Lair,” Annals of Applied Prob-
ability, vol. 2, no. 2 (1992), pp. 294–313.
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there are 4 rising sequences; they are (1), (2, 3, 4), (5, 6), and (7). It is easy to see
that an ordering is the result of a riffle shuffle applied to the identity ordering if
and only if it has no more than two rising sequences. (If the ordering has two rising
sequences, then these rising sequences correspond to the two stacks induced by the
cut, and if the ordering has one rising sequence, then it is the identity ordering.)
Thus, the sample space of orderings obtained by applying a riffle shuffle to the
identity ordering is naturally described as the set of all orderings with at most two
rising sequences.

It is now easy to assign a probability distribution to this sample space. Each
ordering with two rising sequences is assigned the value

b(n, 1/2, k)(
n
k

) =
1
2n

,

and the identity ordering is assigned the value

n + 1
2n

.

There is another way to view a riffle shuffle. We can imagine starting with a
deck cut into two stacks as before, with the same probabilities assignment as before
i.e., the binomial distribution. Once we have the two stacks, we take cards, one by
one, off of the bottom of the two stacks, and place them onto one stack. If there
are k1 and k2 cards, respectively, in the two stacks at some point in this process,
then we make the assumption that the probabilities that the next card to be taken
comes from a given stack is proportional to the current stack size. This implies that
the probability that we take the next card from the first stack equals

k1

k1 + k2
,

and the corresponding probability for the second stack is

k2

k1 + k2
.

We shall now show that this process assigns the uniform probability to each of the
possible interleavings of the two stacks.

Suppose, for example, that an interleaving came about as the result of choosing
cards from the two stacks in some order. The probability that this result occurred
is the product of the probabilities at each point in the process, since the choice
of card at each point is assumed to be independent of the previous choices. Each
factor of this product is of the form

ki

k1 + k2
,

where i = 1 or 2, and the denominator of each factor equals the number of cards left
to be chosen. Thus, the denominator of the probability is just n!. At the moment
when a card is chosen from a stack that has i cards in it, the numerator of the
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corresponding factor in the probability is i, and the number of cards in this stack
decreases by 1. Thus, the numerator is seen to be k!(n− k)!, since all cards in both
stacks are eventually chosen. Therefore, this process assigns the probability

1(
n
k

)
to each possible interleaving.

We now turn to the question of what happens when we riffle shuffle s times. It
should be clear that if we start with the identity ordering, we obtain an ordering
with at most 2s rising sequences, since a riffle shuffle creates at most two rising
sequences from every rising sequence in the starting ordering. In fact, it is not hard
to see that each such ordering is the result of s riffle shuffles. The question becomes,
then, in how many ways can an ordering with r rising sequences come about by
applying s riffle shuffles to the identity ordering? In order to answer this question,
we turn to the idea of an a-shuffle.

a-Shuffles

There are several ways to visualize an a-shuffle. One way is to imagine a creature
with a hands who is given a deck of cards to riffle shuffle. The creature naturally
cuts the deck into a stacks, and then riffles them together. (Imagine that!) Thus,
the ordinary riffle shuffle is a 2-shuffle. As in the case of the ordinary 2-shuffle, we
allow some of the stacks to have 0 cards. Another way to visualize an a-shuffle is
to think about its inverse, called an a-unshuffle. This idea is described in the proof
of the next theorem.

We will now show that an a-shuffle followed by a b-shuffle is equivalent to an ab-
shuffle. This means, in particular, that s riffle shuffles in succession are equivalent
to one 2s-shuffle. This equivalence is made precise by the following theorem.

Theorem 3.9 Let a and b be two positive integers. Let Sa,b be the set of all ordered
pairs in which the first entry is an a-shuffle and the second entry is a b-shuffle. Let
Sab be the set of all ab-shuffles. Then there is a 1-1 correspondence between Sa,b

and Sab with the following property. Suppose that (T1, T2) corresponds to T3. If
T1 is applied to the identity ordering, and T2 is applied to the resulting ordering,
then the final ordering is the same as the ordering that is obtained by applying T3

to the identity ordering.

Proof. The easiest way to describe the required correspondence is through the idea
of an unshuffle. An a-unshuffle begins with a deck of n cards. One by one, cards are
taken from the top of the deck and placed, with equal probability, on the bottom
of any one of a stacks, where the stacks are labelled from 0 to a−1. After all of the
cards have been distributed, we combine the stacks to form one stack by placing
stack i on top of stack i+1, for 0 ≤ i ≤ a−1. It is easy to see that if one starts with
a deck, there is exactly one way to cut the deck to obtain the a stacks generated by
the a-unshuffle, and with these a stacks, there is exactly one way to interleave them
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to obtain the deck in the order that it was in before the unshuffle was performed.
Thus, this a-unshuffle corresponds to a unique a-shuffle, and this a-shuffle is the
inverse of the original a-unshuffle.

If we apply an ab-unshuffle U3 to a deck, we obtain a set of ab stacks, which
are then combined, in order, to form one stack. We label these stacks with ordered
pairs of integers, where the first coordinate is between 0 and a− 1, and the second
coordinate is between 0 and b − 1. Then we label each card with the label of its
stack. The number of possible labels is ab, as required. Using this labelling, we
can describe how to find a b-unshuffle and an a-unshuffle, such that if these two
unshuffles are applied in this order to the deck, we obtain the same set of ab stacks
as were obtained by the ab-unshuffle.

To obtain the b-unshuffle U2, we sort the deck into b stacks, with the ith stack
containing all of the cards with second coordinate i, for 0 ≤ i ≤ b− 1. Then these
stacks are combined to form one stack. The a-unshuffle U1 proceeds in the same
manner, except that the first coordinates of the labels are used. The resulting a

stacks are then combined to form one stack.
The above description shows that the cards ending up on top are all those

labelled (0, 0). These are followed by those labelled (0, 1), (0, 2), . . . , (0, b −
1), (1, 0), (1, 1), . . . , (a − 1, b − 1). Furthermore, the relative order of any pair
of cards with the same labels is never altered. But this is exactly the same as an
ab-unshuffle, if, at the beginning of such an unshuffle, we label each of the cards
with one of the labels (0, 0), (0, 1), . . . , (0, b− 1), (1, 0), (1, 1), . . . , (a− 1, b− 1).
This completes the proof. 2

In Figure 3.11, we show the labels for a 2-unshuffle of a deck with 10 cards.
There are 4 cards with the label 0 and 6 cards with the label 1, so if the 2-unshuffle
is performed, the first stack will have 4 cards and the second stack will have 6 cards.
When this unshuffle is performed, the deck ends up in the identity ordering.

In Figure 3.12, we show the labels for a 4-unshuffle of the same deck (because
there are four labels being used). This figure can also be regarded as an example of
a pair of 2-unshuffles, as described in the proof above. The first 2-unshuffle will use
the second coordinate of the labels to determine the stacks. In this case, the two
stacks contain the cards whose values are

{5, 1, 6, 2, 7} and {8, 9, 3, 4, 10} .

After this 2-unshuffle has been performed, the deck is in the order shown in Fig-
ure 3.11, as the reader should check. If we wish to perform a 4-unshuffle on the
deck, using the labels shown, we sort the cards lexicographically, obtaining the four
stacks

{1, 2}, {3, 4}, {5, 6, 7}, and {8, 9, 10} .

When these stacks are combined, we once again obtain the identity ordering of the
deck. The point of the above theorem is that both sorting procedures always lead
to the same initial ordering.
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Figure 3.11: Before a 2-unshuffle.

Figure 3.12: Before a 4-unshuffle.
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Theorem 3.10 If D is any ordering that is the result of applying an a-shuffle and
then a b-shuffle to the identity ordering, then the probability assigned to D by this
pair of operations is the same as the probability assigned to D by the process of
applying an ab-shuffle to the identity ordering.

Proof. Call the sample space of a-shuffles Sa. If we label the stacks by the integers
from 0 to a− 1, then each cut-interleaving pair, i.e., shuffle, corresponds to exactly
one n-digit base a integer, where the ith digit in the integer is the stack of which
the ith card is a member. Thus, the number of cut-interleaving pairs is equal to
the number of n-digit base a integers, which is an. Of course, not all of these
pairs leads to different orderings. The number of pairs leading to a given ordering
will be discussed later. For our purposes it is enough to point out that it is the
cut-interleaving pairs that determine the probability assignment.

The previous theorem shows that there is a 1-1 correspondence between Sa,b and
Sab. Furthermore, corresponding elements give the same ordering when applied to
the identity ordering. Given any ordering D, let m1 be the number of elements
of Sa,b which, when applied to the identity ordering, result in D. Let m2 be the
number of elements of Sab which, when applied to the identity ordering, result in D.
The previous theorem implies that m1 = m2. Thus, both sets assign the probability

m1

(ab)n

to D. This completes the proof. 2

Connection with the Birthday Problem

There is another point that can be made concerning the labels given to the cards
by the successive unshuffles. Suppose that we 2-unshuffle an n-card deck until the
labels on the cards are all different. It is easy to see that this process produces
each permutation with the same probability, i.e., this is a random process. To see
this, note that if the labels become distinct on the sth 2-unshuffle, then one can
think of this sequence of 2-unshuffles as one 2s-unshuffle, in which all of the stacks
determined by the unshuffle have at most one card in them (remember, the stacks
correspond to the labels). If each stack has at most one card in it, then given any
two cards in the deck, it is equally likely that the first card has a lower or a higher
label than the second card. Thus, each possible ordering is equally likely to result
from this 2s-unshuffle.

Let T be the random variable that counts the number of 2-unshuffles until all
labels are distinct. One can think of T as giving a measure of how long it takes in
the unshuffling process until randomness is reached. Since shuffling and unshuffling
are inverse processes, T also measures the number of shuffles necessary to achieve
randomness. Suppose that we have an n-card deck, and we ask for P (T ≤ s). This
equals 1 − P (T > s). But T > s if and only if it is the case that not all of the
labels after s 2-unshuffles are distinct. This is just the birthday problem; we are
asking for the probability that at least two people have the same birthday, given
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that we have n people and there are 2s possible birthdays. Using our formula from
Example 3.3, we find that

P (T > s) = 1−
(

2s

n

)
n!
2sn

. (3.4)

In Chapter 6, we will define the average value of a random variable. Using this
idea, and the above equation, one can calculate the average value of the random
variable T (see Exercise 6.1.41). For example, if n = 52, then the average value of
T is about 11.7. This means that, on the average, about 12 riffle shuffles are needed
for the process to be considered random.

Cut-Interleaving Pairs and Orderings

As was noted in the proof of Theorem 3.10, not all of the cut-interleaving pairs lead
to different orderings. However, there is an easy formula which gives the number of
such pairs that lead to a given ordering.

Theorem 3.11 If an ordering of length n has r rising sequences, then the number
of cut-interleaving pairs under an a-shuffle of the identity ordering which lead to
the ordering is (

n + a− r

n

)
.

Proof. To see why this is true, we need to count the number of ways in which the
cut in an a-shuffle can be performed which will lead to a given ordering with r rising
sequences. We can disregard the interleavings, since once a cut has been made, at
most one interleaving will lead to a given ordering. Since the given ordering has
r rising sequences, r − 1 of the division points in the cut are determined. The
remaining a − 1 − (r − 1) = a − r division points can be placed anywhere. The
number of places to put these remaining division points is n + 1 (which is the
number of spaces between the consecutive pairs of cards, including the positions at
the beginning and the end of the deck). These places are chosen with repetition
allowed, so the number of ways to make these choices is(

n + a− r

a− r

)
=
(

n + a− r

n

)
.

In particular, this means that if D is an ordering that is the result of applying
an a-shuffle to the identity ordering, and if D has r rising sequences, then the
probability assigned to D by this process is(

n+a−r
n

)
an

.

This completes the proof. 2
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The above theorem shows that the essential information about the probability
assigned to an ordering under an a-shuffle is just the number of rising sequences in
the ordering. Thus, if we determine the number of orderings which contain exactly
r rising sequences, for each r between 1 and n, then we will have determined the
distribution function of the random variable which consists of applying a random
a-shuffle to the identity ordering.

The number of orderings of {1, 2, . . . , n} with r rising sequences is denoted by
A(n, r), and is called an Eulerian number. There are many ways to calculate the
values of these numbers; the following theorem gives one recursive method which
follows immediately from what we already know about a-shuffles.

Theorem 3.12 Let a and n be positive integers. Then

an =
a∑

r=1

(
n + a− r

n

)
A(n, r) . (3.5)

Thus,

A(n, a) = an −
a−1∑
r=1

(
n + a− r

n

)
A(n, r) .

In addition,
A(n, 1) = 1 .

Proof. The second equation can be used to calculate the values of the Eulerian
numbers, and follows immediately from the Equation 3.5. The last equation is
a consequence of the fact that the only ordering of {1, 2, . . . , n} with one rising
sequence is the identity ordering. Thus, it remains to prove Equation 3.5. We will
count the set of a-shuffles of a deck with n cards in two ways. First, we know that
there are an such shuffles (this was noted in the proof of Theorem 3.10). But there
are A(n, r) orderings of {1, 2, . . . , n} with r rising sequences, and Theorem 3.11
states that for each such ordering, there are exactly(

n + a− r

n

)
cut-interleaving pairs that lead to the ordering. Therefore, the right-hand side of
Equation 3.5 counts the set of a-shuffles of an n-card deck. This completes the
proof. 2

Random Orderings and Random Processes

We now turn to the second question that was asked at the beginning of this section:
What do we mean by a “random” ordering? It is somewhat misleading to think
about a given ordering as being random or not random. If we want to choose a
random ordering from the set of all orderings of {1, 2, . . . , n}, we mean that we
want every ordering to be chosen with the same probability, i.e., any ordering is as
“random” as any other.
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The word “random” should really be used to describe a process. We will say that
a process that produces an object from a (finite) set of objects is a random process
if each object in the set is produced with the same probability by the process. In
the present situation, the objects are the orderings, and the process which produces
these objects is the shuffling process. It is easy to see that no a-shuffle is really a
random process, since if T1 and T2 are two orderings with a different number of
rising sequences, then they are produced by an a-shuffle, applied to the identity
ordering, with different probabilities.

Variation Distance

Instead of requiring that a sequence of shuffles yield a process which is random, we
will define a measure that describes how far away a given process is from a random
process. Let X be any process which produces an ordering of {1, 2, . . . , n}. Define
fX(π) be the probability that X produces the ordering π. (Thus, X can be thought
of as a random variable with distribution function f .) Let Ωn be the set of all
orderings of {1, 2, . . . , n}. Finally, let u(π) = 1/|Ωn| for all π ∈ Ωn. The function
u is the distribution function of a process which produces orderings and which is
random. For each ordering π ∈ Ωn, the quantity

|fX(π)− u(π)|

is the difference between the actual and desired probabilities that X produces π. If
we sum this over all orderings π and call this sum S, we see that S = 0 if and only
if X is random, and otherwise S is positive. It is easy to show that the maximum
value of S is 2, so we will multiply the sum by 1/2 so that the value falls in the
interval [0, 1]. Thus, we obtain the following sum as the formula for the variation
distance between the two processes:

‖ fX − u ‖= 1
2

∑
π∈Ωn

|fX(π)− u(π)| .

Now we apply this idea to the case of shuffling. We let X be the process of s

successive riffle shuffles applied to the identity ordering. We know that it is also
possible to think of X as one 2s-shuffle. We also know that fX is constant on the
set of all orderings with r rising sequences, where r is any positive integer. Finally,
we know the value of fX on an ordering with r rising sequences, and we know how
many such orderings there are. Thus, in this specific case, we have

‖ fX − u ‖= 1
2

n∑
r=1

A(n, r)
∣∣∣∣(2s + n− r

n

)
/2ns − 1

n!

∣∣∣∣ .

Since this sum has only n summands, it is easy to compute this for moderate sized
values of n. For n = 52, we obtain the list of values given in Table 3.14.

To help in understanding these data, they are shown in graphical form in Fig-
ure 3.13. The program VariationList produces the data shown in both Table 3.14
and Figure 3.13. One sees that until 5 shuffles have occurred, the output of X is
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Number of Riffle Shuffles Variation Distance
1 1
2 1
3 1
4 0.9999995334
5 0.9237329294
6 0.6135495966
7 0.3340609995
8 0.1671586419
9 0.0854201934

10 0.0429455489
11 0.0215023760
12 0.0107548935
13 0.0053779101
14 0.0026890130

Table 3.14: Distance to the random process.

5 10 15 20

0.2

0.4

0.6

0.8

1

Figure 3.13: Distance to the random process.
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very far from random. After 5 shuffles, the distance from the random process is
essentially halved each time a shuffle occurs.

Given the distribution functions fX(π) and u(π) as above, there is another
way to view the variation distance ‖ fX − u ‖. Given any event T (which is a
subset of Sn), we can calculate its probability under the process X and under the
uniform process. For example, we can imagine that T represents the set of all
permutations in which the first player in a 7-player poker game is dealt a straight
flush (five consecutive cards in the same suit). It is interesting to consider how
much the probability of this event after a certain number of shuffles differs from the
probability of this event if all permutations are equally likely. This difference can
be thought of as describing how close the process X is to the random process with
respect to the event T .

Now consider the event T such that the absolute value of the difference between
these two probabilities is as large as possible. It can be shown that this absolute
value is the variation distance between the process X and the uniform process. (The
reader is asked to prove this fact in Exercise 4.)

We have just seen that, for a deck of 52 cards, the variation distance between
the 7-riffle shuffle process and the random process is about .334. It is of interest
to find an event T such that the difference between the probabilities that the two
processes produce T is close to .334. An event with this property can be described
in terms of the game called New-Age Solitaire.

New-Age Solitaire

This game was invented by Peter Doyle. It is played with a standard 52-card deck.
We deal the cards face up, one at a time, onto a discard pile. If an ace is encountered,
say the ace of Hearts, we use it to start a Heart pile. Each suit pile must be built
up in order, from ace to king, using only subsequently dealt cards. Once we have
dealt all of the cards, we pick up the discard pile and continue. We define the Yin
suits to be Hearts and Clubs, and the Yang suits to be Diamonds and Spades. The
game ends when either both Yin suit piles have been completed, or both Yang suit
piles have been completed. It is clear that if the ordering of the deck is produced
by the random process, then the probability that the Yin suit piles are completed
first is exactly 1/2.

Now suppose that we buy a new deck of cards, break the seal on the package,
and riffle shuffle the deck 7 times. If one tries this, one finds that the Yin suits win
about 75% of the time. This is 25% more than we would get if the deck were in
truly random order. This deviation is reasonably close to the theoretical maximum
of 33.4% obtained above.

Why do the Yin suits win so often? In a brand new deck of cards, the suits are
in the following order, from top to bottom: ace through king of Hearts, ace through
king of Clubs, king through ace of Diamonds, and king through ace of Spades. Note
that if the cards were not shuffled at all, then the Yin suit piles would be completed
on the first pass, before any Yang suit cards are even seen. If we were to continue
playing the game until the Yang suit piles are completed, it would take 13 passes
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through the deck to do this. Thus, one can see that in a new deck, the Yin suits are
in the most advantageous order and the Yang suits are in the least advantageous
order. Under 7 riffle shuffles, the relative advantage of the Yin suits over the Yang
suits is preserved to a certain extent.

Exercises

1 Given any ordering σ of {1, 2, . . . , n}, we can define σ−1, the inverse ordering
of σ, to be the ordering in which the ith element is the position occupied by
i in σ. For example, if σ = (1, 3, 5, 2, 4, 7, 6), then σ−1 = (1, 4, 2, 5, 3, 7, 6). (If
one thinks of these orderings as permutations, then σ−1 is the inverse of σ.)

A fall occurs between two positions in an ordering if the left position is occu-
pied by a larger number than the right position. It will be convenient to say
that every ordering has a fall after the last position. In the above example,
σ−1 has four falls. They occur after the second, fourth, sixth, and seventh
positions. Prove that the number of rising sequences in an ordering σ equals
the number of falls in σ−1.

2 Show that if we start with the identity ordering of {1, 2, . . . , n}, then the prob-
ability that an a-shuffle leads to an ordering with exactly r rising sequences
equals (

n+a−r
n

)
an

A(n, r) ,

for 1 ≤ r ≤ a.

3 Let D be a deck of n cards. We have seen that there are an a-shuffles of D.
A coding of the set of a-unshuffles was given in the proof of Theorem 3.9. We
will now give a coding of the a-shuffles which corresponds to the coding of
the a-unshuffles. Let S be the set of all n-tuples of integers, each between 0
and a − 1. Let M = (m1,m2, . . . ,mn) be any element of S. Let ni be the
number of i’s in M , for 0 ≤ i ≤ a − 1. Suppose that we start with the deck
in increasing order (i.e., the cards are numbered from 1 to n). We label the
first n0 cards with a 0, the next n1 cards with a 1, etc. Then the a-shuffle
corresponding to M is the shuffle which results in the ordering in which the
cards labelled i are placed in the positions in M containing the label i. The
cards with the same label are placed in these positions in increasing order of
their numbers. For example, if n = 6 and a = 3, let M = (1, 0, 2, 2, 0, 2).
Then n0 = 2, n1 = 1, and n2 = 3. So we label cards 1 and 2 with a 0, card
3 with a 1, and cards 4, 5, and 6 with a 2. Then cards 1 and 2 are placed
in positions 2 and 5, card 3 is placed in position 1, and cards 4, 5, and 6 are
placed in positions 3, 4, and 6, resulting in the ordering (3, 1, 4, 5, 2, 6).

(a) Using this coding, show that the probability that in an a-shuffle, the
first card (i.e., card number 1) moves to the ith position, is given by the
following expression:

(a− 1)i−1an−i + (a− 2)i−1(a− 1)n−i + · · ·+ 1i−12n−i

an
.
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(b) Give an accurate estimate for the probability that in three riffle shuffles
of a 52-card deck, the first card ends up in one of the first 26 positions.
Using a computer, accurately estimate the probability of the same event
after seven riffle shuffles.

4 Let X denote a particular process that produces elements of Sn, and let U

denote the uniform process. Let the distribution functions of these processes
be denoted by fX and u, respectively. Show that the variation distance
‖ fX − u ‖ is equal to

max
T⊂Sn

∑
π∈T

(
fX(π)− u(π)

)
.

Hint : Write the permutations in Sn in decreasing order of the difference
fX(π)− u(π).

5 Consider the process described in the text in which an n-card deck is re-
peatedly labelled and 2-unshuffled, in the manner described in the proof of
Theorem 3.9. (See Figures 3.10 and 3.13.) The process continues until the
labels are all different. Show that the process never terminates until at least
dlog2(n)e unshuffles have been done.



Chapter 4

Conditional Probability

4.1 Discrete Conditional Probability

Conditional Probability

In this section we ask and answer the following question. Suppose we assign a
distribution function to a sample space and then learn that an event E has occurred.
How should we change the probabilities of the remaining events? We shall call the
new probability for an event F the conditional probability of F given E and denote
it by P (F |E).

Example 4.1 An experiment consists of rolling a die once. Let X be the outcome.
Let F be the event {X = 6}, and let E be the event {X > 4}. We assign the
distribution function m(ω) = 1/6 for ω = 1, 2, . . . , 6. Thus, P (F ) = 1/6. Now
suppose that the die is rolled and we are told that the event E has occurred. This
leaves only two possible outcomes: 5 and 6. In the absence of any other information,
we would still regard these outcomes to be equally likely, so the probability of F

becomes 1/2, making P (F |E) = 1/2. 2

Example 4.2 In the Life Table (see Appendix C), one finds that in a population
of 100,000 females, 89.835% can expect to live to age 60, while 57.062% can expect
to live to age 80. Given that a woman is 60, what is the probability that she lives
to age 80?

This is an example of a conditional probability. In this case, the original sample
space can be thought of as a set of 100,000 females. The events E and F are the
subsets of the sample space consisting of all women who live at least 60 years, and
at least 80 years, respectively. We consider E to be the new sample space, and note
that F is a subset of E. Thus, the size of E is 89,835, and the size of F is 57,062.
So, the probability in question equals 57,062/89,835 = .6352. Thus, a woman who
is 60 has a 63.52% chance of living to age 80. 2

133
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Example 4.3 Consider our voting example from Section 1.2: three candidates A,
B, and C are running for office. We decided that A and B have an equal chance of
winning and C is only 1/2 as likely to win as A. Let A be the event “A wins,” B

that “B wins,” and C that “C wins.” Hence, we assigned probabilities P (A) = 2/5,
P (B) = 2/5, and P (C) = 1/5.

Suppose that before the election is held, A drops out of the race. As in Exam-
ple 4.1, it would be natural to assign new probabilities to the events B and C which
are proportional to the original probabilities. Thus, we would have P (B| A) = 2/3,
and P (C| A) = 1/3. It is important to note that any time we assign probabilities
to real-life events, the resulting distribution is only useful if we take into account
all relevant information. In this example, we may have knowledge that most voters
who favor A will vote for C if A is no longer in the race. This will clearly make the
probability that C wins greater than the value of 1/3 that was assigned above. 2

In these examples we assigned a distribution function and then were given new
information that determined a new sample space, consisting of the outcomes that
are still possible, and caused us to assign a new distribution function to this space.

We want to make formal the procedure carried out in these examples. Let
Ω = {ω1, ω2, . . . , ωr} be the original sample space with distribution function m(ωj)
assigned. Suppose we learn that the event E has occurred. We want to assign a new
distribution function m(ωj |E) to Ω to reflect this fact. Clearly, if a sample point ωj

is not in E, we want m(ωj |E) = 0. Moreover, in the absence of information to the
contrary, it is reasonable to assume that the probabilities for ωk in E should have
the same relative magnitudes that they had before we learned that E had occurred.
For this we require that

m(ωk|E) = cm(ωk)

for all ωk in E, with c some positive constant. But we must also have∑
E

m(ωk|E) = c
∑
E

m(ωk) = 1 .

Thus,

c =
1∑

E m(ωk)
=

1
P (E)

.

(Note that this requires us to assume that P (E) > 0.) Thus, we will define

m(ωk|E) =
m(ωk)
P (E)

for ωk in E. We will call this new distribution the conditional distribution given E.
For a general event F , this gives

P (F |E) =
∑
F∩E

m(ωk|E) =
∑
F∩E

m(ωk)
P (E)

=
P (F ∩ E)

P (E)
.

We call P (F |E) the conditional probability of F occurring given that E occurs,
and compute it using the formula

P (F |E) =
P (F ∩ E)

P (E)
.
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Figure 4.1: Tree diagram.

Example 4.4 (Example 4.1 continued) Let us return to the example of rolling a
die. Recall that F is the event X = 6, and E is the event X > 4. Note that E ∩ F

is the event F . So, the above formula gives

P (F |E) =
P (F ∩ E)

P (E)

=
1/6
1/3

=
1
2

,

in agreement with the calculations performed earlier. 2

Example 4.5 We have two urns, I and II. Urn I contains 2 black balls and 3 white
balls. Urn II contains 1 black ball and 1 white ball. An urn is drawn at random
and a ball is chosen at random from it. We can represent the sample space of this
experiment as the paths through a tree as shown in Figure 4.1. The probabilities
assigned to the paths are also shown.

Let B be the event “a black ball is drawn,” and I the event “urn I is chosen.”
Then the branch weight 2/5, which is shown on one branch in the figure, can now
be interpreted as the conditional probability P (B|I).

Suppose we wish to calculate P (I|B). Using the formula, we obtain

P (I|B) =
P (I ∩B)

P (B)

=
P (I ∩B)

P (B ∩ I) + P (B ∩ II)

=
1/5

1/5 + 1/4
=

4
9

.

2


